Ausgabe: September 2018 *)

GMBI 2018 S. 913-934 [Nr. 48] (v. 26.10.2018)

Technische Regeln
für
Gefahrstoffe

Krebserzeugende
N-Nitrosamine der Kat 1A
und 1B

TRGS 552

Die Technischen Regeln für Gefahrstoffe (TRGS) geben den Stand der Technik, Arbeitsmedizin und Arbeitshygiene sowie sonstige gesicherte Erkenntnisse für Tätigkeiten mit Gefahrstoffen einschließlich deren Einstufung und Kennzeichnung wieder. Sie werden vom

Ausschuss für Gefahrstoffe (AGS)

unter Beteiligung des Ausschusses für Arbeitsmedizin (AfAMed) aufgestellt und vom Bundesministerium für Arbeit und Soziales (BMAS) im Gemeinsamen Ministerialblatt (GMBI) bekannt gegeben.

Diese TRGS konkretisiert im Rahmen ihres Anwendungsbereichs Anforderungen der Gefahrstoffverordnung und der Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedVV). Bei Einhaltung der Technischen Regeln kann der Arbeitgeber insoweit davon ausgehen, dass die entsprechenden Anforderungen der Verordnung erfüllt sind. Wählt der Arbeitgeber eine andere Lösung, muss er damit die gleiche Sicherheit und den gleichen Gesundheitsschutz für die Beschäftigten erreichen.

Inhalt

1	Anw	endungsbereich	2
2		riffsbestimmungen und Erläuterungen	
3		rmationsermittlung und Gefährdungsbeurteilung	
		Informationsermittlung	
		Gefährdungen und Aufnahmewege	
		Ermittlung und Beurteilung der Exposition	
4	Sch	utzmaßnahmen	10
	4.1	Allgemeine Hinweise	10
		Substitution	
	4.3	Technische Schutzmaßnahmen	12

- Aufnahme bisher kaum oder nicht untersuchte Arbeitsbereiche mit potentieller Nitrosamin-Exposition,
- Berücksichtigung des Aufnahmewegs "Haut" in der Gefährdungsbeurteilung mit einem vereinfachten pragmatischen Bewertungsverfahren,
- Übertragung der Toleranzkonzentration und Akzeptanzkonzentration für Dimethylnitrosamin (DMNA) auf die anderen krebserzeugenden Nitrosamine als Beurteilungsmaßstab,
- Modifizierung der bewährten Summenbegrenzung.
- Abgestuftes Baukastensystem mit Praxisbeispielen zu Substitutionsmöglichkeiten Stoffe und Verfahren, Konstruktion und Betrieb geschlossener Systeme und von Absaugungen sowie Inhibition, Zerstörung und Entfernung von Nitrosaminen im Prozess und aus Erzeugnissen.

^{*)} Hinweis: Neuerungen sind u.a.

	4.4	Organisatorische Schutzmaßnahmen	14
	4.5	Persönliche Schutzmaßnahmen	15
5	Übe	rprüfung der Funktion und Wirksamkeit von Schutzmaßnahmen	16
6	Arbe	eitsmedizinische Prävention	17
	6.1	Beteiligung des Betriebsarztes an der Gefährdungsbeurteilung und Erkenntnisse aus der arbeitsmedizinischen Vorsorge	17
	6.2	Arbeitsmedizinisch-toxikologische Beratung im Rahmen der	
		Unterweisung	17
	6.3	Arbeitsmedizinische Vorsorge	18
Liter	atur		20
Anha	ang 1	: Ablaufschema der Gefährdungsbeurteilung	22
Anha	ang 2	: Stofflisten	23
Anha	ang 3	: Messung von N-Nitrosaminen	24
Anha	ana 4	: Substitution und Schutzmaßnahmen bei der Herstellung von Gummi	26

1 Anwendungsbereich

- (1) Diese TRGS dient zum Schutz der Beschäftigten und anderer Personen, die während ihrer Tätigkeit krebserzeugende N-Nitrosamine der Kategorien 1A und 1B über die Atemwege oder Hautkontakt aufnehmen können¹.
- (2) Diese TRGS beschreibt in Ergänzung zur TRGS 400² "Gefährdungsbeurteilung für Tätigkeiten mit Gefahrstoffen" Vorgehensweisen bei der Informationsermittlung und Gefährdungsbeurteilung sowie Schutzmaßnahmen zur Minimierung von Belastungen durch krebserzeugende N-Nitrosamine (Kat. 1A und 1B) an Arbeitsplätzen.
- (3) Diese TRGS gilt nicht für die in Anhang 2 Tabelle 2 aufgeführten N-Nitrosamine, bei denen sich in Prüfungen kein Hinweis auf eine krebserzeugende Wirkung ergeben hat.
- (4) Diese TRGS gilt nicht für die Herstellung und Verwendung von N-Nitrosaminen in reiner oder konzentrierter Form (siehe Nummer 3.1 Absatz 2).

2 Begriffsbestimmungen und Erläuterungen

- (1) N-Nitrosamine sind organische Stickstoffverbindungen, die eine an den aminischen Stickstoff gebundene Nitrosogruppe (NO) enthalten. In dieser TRGS werden ausschließlich die aus sekundären Aminen (R_2N-H) hervorgehenden N-Nitrosamine (R_2N-NO) behandelt³.
- (2) Gemische gelten nach der TRGS 905 "Verzeichnis krebserzeugender, keimzellmutagener oder reproduktionstoxischer Stoffe" als krebserzeugend, wenn die in Anhang 2 Tabelle 1 angegebenen speziellen Konzentrationsgrenzen überschritten sind. Diese wurden auf Grund der stark krebserzeugenden Wirkung

Die aus primären Aminen hervorgehenden primären N-Nitrosamine sind instabil.

- Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de/ags -

In dieser TRGS werden Einstufungen nach der CLP-Verordnung (EG) Nr. 1272/2008 bezeichnet. Bisher sind keine N-Nitrosamine als möglicherweise krebserzeugend in die Kategorie 2 eingestuft.

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS- 400.html

festgelegt. Bringt der Hersteller ein nitrosaminhaltiges Gemisch in den Verkehr, bei dem die in dieser Tabelle aufgeführten Konzentrationsgrenzen überschritten sind, so hat er im Sicherheitsdatenblatt auf die Einstufung nach TRGS 905 hinzuweisen⁴.

- (3) Nitrosierende Agenzien bzw. deren chemische Vorstufen sind u.a. [4-7]:
- 1. Nitrose Gase⁵ (N₂O₃ und N₂O₄ als direkte nitrosierende Agenzien sowie NO und NO₂ als Vorstufen),
- 2. organische Nitro- und Nitrosoverbindungen,
- 3. Salpetrige Säure (HNO₂) und deren Verbindungen,
- 4. Nitrite, z.B. Natriumnitrit (NaNO₂) und Kaliumnitrit (KNO₂),
- 5. Nitrite durch chemische oder bakterielle Reduktion von Nitraten,
- 6. Nitrit durch chemische oder bakterielle Oxidation von Ammoniak bzw. Ammoniumverbindungen (Nitrifikation),
- 7. Nitrosylhalogenide (z.B. NOCl, NOBr).
- (4) Sekundäre Amine (R_2N-H) können als chemische Einsatz- und Hilfsstoffe aber auch als Inhaltsstoff in verwendungsfertigen Produkten vorliegen. Amine von technischer Bedeutung, die unter den Bedingungen der jeweiligen industriellen Praxis krebserzeugende N-Nitrosamine bilden, sind in Anhang 2 Tabelle 3 aufgeführt.
- (5) Sekundäre Amine können auch durch andere stickstoffhaltige Verbindungen in signifikantem Ausmaß gebildet werden, z.B. durch Hydrolyse, thermische oder biogene Zersetzung oder infolge anderer chemischer Reaktionen. Dazu gehören u.a.
- 1. bestimmte Fettsäurealkanolamide (Korrosionsinhibitoren), die aus einer Fettsäure und einem sekundären Alkanolamin hergestellt werden,
- 2. bestimmte N,N-Dialkylbenzdiazolsulfenamide N,N-Dithiocarbamate sowie Diund Tetraalkylthiurame (z. B. Vulkanisationsbeschleuniger, Pflanzenschutzmittel),
- 3. Carbonsäuredialkylamide wie Dimethylformamid (z. B. Reinigungs- und Lösemittel) und Dimethylacetamid (u.a. bei der Herstellung von Polyacrylnitrilfasern).

3 Informationsermittlung und Gefährdungsbeurteilung

(1) Die Gefährdungsbeurteilung besteht aus der Ermittlung und Bewertung der Gefährdungen mit dem Ziel, erforderliche Maßnahmen für Sicherheit und Gesundheit festzulegen. Der Arbeitgeber hat die Wirksamkeit dieser Maßnahmen regelmäßig zu prüfen und zu optimieren, um verbleibende Restgefährdungen zu minimieren. Die Gefährdungsbeurteilung ist bei Neueinführungen von Stoffen oder wesentlichen Änderungen von Arbeitsverfahren oder Stoffen durchzuführen, regelmäßig zu überprüfen und nach § 6 GefStoffV zu dokumentieren.

Die Angabe der Einstufung kann in Abschnitt 15 des Sicherheitsdatenblatts erfolgen, für die Kennzeichnung gelten derzeit abweichend die allgemeine Konzentrationsgrenze von 0,1 % sowie die stoffspezifischen Konzentrationsgrenzen von 0,001 % für N-Nitrosodimethylamin und N-Nitrosodipropylamin nach der CLP-Verordnung.

Sie werden synonym auch als Stickstoffoxide bezeichnet und liegen auch ubiquitär als Luftschadstoffe vor.

(2) Falls der Arbeitgeber nicht die erforderliche Fachkunde zur Durchführung der Gefährdungsbeurteilung besitzt, hat er sich fachkundig beraten zu lassen. Fachkundig können insbesondere die Fachkraft für Arbeitssicherheit und die Betriebsärztin oder der Betriebsarzt sein.

3.1 Informationsermittlung

- (1) Bei der nach § 6 GefStoffV durchzuführenden Gefährdungsbeurteilung hat der Arbeitgeber zu prüfen, ob Arbeitsbereiche vorliegen, in denen N-Nitrosamine auftreten können⁶.
- (2) Krebserzeugende N-Nitrosamine besitzen als Einsatzstoffe keine technische Bedeutung. In der Regel entstehen sie in Spuren prozessbedingt unter bestimmten Reaktionsbedingungen aus sekundären Aminen und nitrosierenden Agenzien. In reiner Form oder als Konzentrate werden sie nur zu wissenschaftlichen Zwecken hergestellt oder eingesetzt.
- (3) Die meisten geprüften N-Nitrosamine haben sich im Tierversuch als krebserzeugend erwiesen [1,2]. Nach der GefStoffV zählen N-Nitrosamine zu den besonders gefährlichen und hoch potenten krebserzeugenden Stoffen⁷. Zwölf häufig in industriellen Bereichen auftretende N-Nitrosamine wurden als krebserzeugend in die Kategorie 1B eingestuft und sind in Anhang 2 Tabelle 1 aufgeführt. Falls zu einem N-Nitrosamin keine Prüfdaten oder entsprechende aussagekräftige Informationen vorliegen und es nicht in Anhang 2 Tabelle 2 aufgeführt ist, muss der Arbeitgeber davon ausgehen, dass es sich um ein krebserzeugendes N-Nitrosamin handelt, das somit einer Einstufung in die Kategorie 1B gleichgestellt ist. Dies hat zur Konsequenz, dass bei Tätigkeiten mit diesem Gefahrstoff die besonderen Schutzmaßnahmen nach § 10 GefStoffV erforderlich sind.
- (4) Weitere Wirkungen der N-Nitrosamine: Über häufig vorkommende N-Nitrosamine liegen Einstufungen und medizinisch-toxikologische Informationen hinsichtlich ihrer krebserzeugenden Wirkung vor. Andere Gefahrenklassen (Gefährlichkeitsmerkmale) sind oft nicht oder nur teilweise untersucht worden. Einige N-Nitrosamine sind von Herstellern, die diese für wissenschaftliche Zwecke in den Verkehr bringen, als giftig eingestuft worden. So wird Dimethylnitrosamin mit H330 "Lebensgefahr bei Einatmen" (akute Toxizität, Kategorie 1) und H301 "giftig bei Verschlucken" (akute Toxizität, Kategorie 3) gekennzeichnet. Bei Tierversuchen mit N-Nitrosaminen sind auch Gewebszerstörungen (Nekrosen) sowie Störungen des Kohlehydrat- und Fettstoffwechsels beobachtet worden.
- (5) N-Nitrosamine entstehen in der Regel aus sekundären Aminen oder anderen stickstoffhaltigen Verbindungen und nitrosierenden Agenzien (siehe Nummer 2). Die Bildung kann sowohl in der Luft am Arbeitsplatz als auch im Herstellungs- oder Anwendungsprozess stattfinden, so dass N-Nitrosamine auch aus dem Prozess, hergestellten Stoffen, Gemischen oder Erzeugnissen freigesetzt werden können. Grundsätzlich können alle sekundären Amine zu N-Nitrosaminen umgesetzt werden. Entstehen damit N-Nitrosamine, die in Anhang 2 Tabelle 2 aufgeführt werden, fallen diese nicht unter den Geltungsbereich dieser TRGS. Gebäude können N-

Diese Prüfung bezieht sich auf die Gefährdungen ohne Berücksichtigung von Schutzmaßnahmen. Restgefährdungen, die nach Anwendung von Schutzmaßnahmen verbleiben, werden in Absatz 10 berücksichtigt.

siehe Anhang 2 Nummer 6 Absatz 8 GefStoffV

Nitrosamine über lange Zeiträume speichern, so dass es an ehemaligen nitrosaminbelasteten Arbeitsplätzen zu späteren Innenraumbelastungen kommen kann.

- (6) Unter speziellen Bedingungen können sekundäre Amine und damit N-Nitrosamine auch aus primären oder aus tertiären Aminen gebildet werden [3]. Aliphatische Diamine können mit Nitrit zu zyklischen N-Nitrosaminen umgesetzt werden. Dialkylhydrazine und Chlordialkylhydrazine können N-Nitrosamine durch Oxidation oder Hydrolyse bilden. Sekundäre Amine können auch N-Nitrosamine als Verunreinigung enthalten [4].
- (7) Untersuchte Arbeitsbereiche, in denen krebserzeugende N-Nitrosamine auftreten können, sind unter anderem:

Tabelle 1: Untersuchte Arbeitsbereiche

Industriezweig	Arbeitsbereich Produktionsbereich	Kritische Arbeitsbereiche und -bedingungen
Metallindustrie und andere Industrien mit Materialbearbeitung	Einsatz von wassergemischten Kühlschmierstoffen (KSS)	Einsatz von wassergemischten KSS, die nicht der TRGS 611 entsprechen und sek. Amine enthalten können (siehe TRGS 611 ⁸)
	Herstellung und Verwendung von Korrosionsschutzmitteln einschl. VCI ("volatile corrosion inhibitors")-Materialien	Tätigkeiten mit Korrosionsschutzmitteln und Handhabung von korrosionsgeschützten Metallteilen einschl. VCI- Materialien, die sekundäre Amine oder Nitrit enthalten (siehe TRGS 615 ⁹)
Gummiindustrie	Abwiegen, Mischen, Halbzeug- verarbeitung, Vulkanisation, Nachbehandlung, Lagerung	Kalander, Extrusionsanlagen, Salzbäder, Vulkanisation, Formen, Kontrolle, Lagerung technischer Gummiartikel sowie von Reifen, Verarbeitung von Emulsionspolymerisaten
Chemische Industrie	Herstellung und Verwendung von Aminen, Befüll-, Umfüll- und Abfüllarbeiten von Aminen, Herstellung von Polyacrylnitrilfasern, Beschichtungen nach dem Koagulationsverfahren	Herstellung und Verwendung von sekundären Aminen und Lösemitteln wie Dimethylformamid und Dimethylacetamid
Lederindustrie	Wasserwerkstatt	Verarbeitung von Häuten
Gießereiindustrie	Verwendung von Kernen, die mit aminischen Katalysatoren hergestellt wurden.	Gießen, Abkühlen sowie die anschließende Entfernung von Formsand und Rückständen, insbesondere aus den Kernen
Sonstige industrielle Bereiche	Tätigkeiten mit Gummiartikeln	Bearbeitung und Lagerung technischer Gummiartikel

Weitere Industrie- und Wirtschaftszweige, bei denen das Auftreten von N-Nitrosaminen für einzelne, spezielle Arbeitsbereiche nicht ausgeschlossen werden kann, sind:

- 1. Landwirtschaft [5,6],
- 2. Abwasserbehandlung [7,8,9],

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-611.html

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-615.html

- 3. Abfallentsorgung [4,10],
- 4. Kohlendioxidabscheidung [11],
- 5. Fisch- und Fleischverarbeitung [12,13].

Hier liegen Hinweise über das Auftreten von sekundären Aminen oder die mögliche Entstehung von N-Nitrosaminen vor. Für diese Bereiche liegen derzeit nicht genug Messergebnisse vor, um eine allgemeine Beurteilung der Gefährdung zu ermöglichen.

- (8) Falls keine allgemein zugänglichen Informationen über das Vorliegen von N-Nitrosaminen verfügbar sind, hat der Arbeitgeber zu prüfen, ob sekundäre Amine und nitrosierende Agenzien im Prozess¹⁰ oder der Luft am Arbeitsplatz vorliegen. Hierzu sind die betrieblichen Kenntnisse, die Angaben in den Sicherheitsdatenblättern, weitere Herstellerangaben und die in Kap. 2 dieser TRGS angegebenen Erläuterungen heranzuziehen. Wenn die Bildung von N-Nitrosaminen nicht ausgeschlossen werden kann und keine weiteren Informationen vorliegen, ist eine mögliche Exposition durch N-Nitrosamine am Arbeitsplatz nach TRGS 402 "Ermitteln und Beurteilen der Gefährdungen bei Tätigkeiten mit Gefahrstoffen: Inhalative Exposition"¹¹ z.B. durch Messungen nach Anhang 3 dieser TRGS zu prüfen.
- (9) Für den Einsatz von wasserbasierten Kühlschmierstoffen liegt die TRGS 611¹² "Verwendungs-beschränkungen für wassermischbare bzw. wassergemischte Kühlschmierstoffe, bei deren Einsatz N-Nitrosamine auftreten können" vor und für den Einsatz von Korrosionsschutzmitteln die TRGS 615 "Verwendungsbeschränkungen für Korrosionsschutzmittel, bei deren Einsatz N-Nitrosamine auftreten können".
- (10) Ist mit dem Auftreten von krebserzeugenden N-Nitrosaminen zu rechnen, so hat der Arbeitgeber zunächst von einer hohen potentiellen Gefährdung auszugehen. Nach Anwendung bzw. Überprüfung und gegebenenfalls Ergänzung der in Nummer 4 beschriebenen Schutzmaßnahmen hat der Arbeitgeber die resultierenden Gefährdungen nach Nummer 3.3 zu beurteilen und führt die weiteren in Nummer 3.3.4 beschriebenen Maßnahmen durch.
- (11) Stellt der Arbeitgeber gem. Nummer 3.1 Absatz 1 fest, dass sich keine Hinweise auf N-Nitrosamine¹³ oder das gemeinsame Vorliegen von Aminen und nitrosierenden Verbindungen ermitteln lassen, so wird empfohlen, dass er die Prüfung und das Ergebnis formlos als Anmerkung in der Gefährdungsbeurteilung dokumentiert.

Hierbei ist auch die Ver- oder Bearbeitung von Erzeugnissen auszuwerten.

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-402.html

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-611.html

Dabei ist auch zu prüfen, ob Nitrosaminbelastungen aus dem Gebäude, z.B. nach Nutzungsänderung nitrosaminbelasteter Arbeitsbereiche vorhanden sind. Produktionsprozesse, in deren Verlauf krebserzeugende N-Nitrosamine entstehen, können zur Kontamination der Bausubstanz der Produktions- bzw. Lagergebäude führen. Je nach Art der Bausubstanz (Beton, Kalksandstein, Putz, Holz, Trapezblech, Estrich u. a.) fällt die Kontamination unterschiedlich aus und kann Schichttiefen von bis zu mehreren Dezimetern umfassen. Da diese Stoffe anschließend wieder an die Umgebungsluft abgegeben werden können, besteht die Möglichkeit einer Belastung der Raumluft. Die Freisetzung ist von der Temperatur und Luftfeuchtigkeit abhängig, die auftretenden N-Nitrosaminkonzentrationen in der Raumluft können daher stark schwanken. Bei Verdacht auf eine Kontamination sollte daher eine Untersuchung der Bausubstanz und der Raumluft erfolgen. Die Anforderungen des Arbeitsstättenrechts wie die Arbeitsstättenrichtlinie ASR 3.6 "Lüftung" bleiben hiervon unberührt.

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de/ags -

3.2 Gefährdungen und Aufnahmewege

- (1) Atemwege: Leicht flüchtige N-Nitrosamine werden primär als Spurengas, schwer flüchtige N-Nitrosamine als Bestandteil von Aerosolen oder luftgetragenen Stäuben über die Atemwege aufgenommen.
- (2) Hautkontakt: Es kann zur Aufnahme von N-Nitrosaminen über die Haut kommen bei
- manuellem Eingriff in den Prozess, z.B. beim Hautkontakt mit nitrosaminhaltigen flüssigen oder festen Gemischen bei der Produktentnahme,
- 2. Hautkontakt mit nitrosaminhaltigen Erzeugnissen, insbesondere zeitnah zur Fertigung und bei Heißanwendungen,
- 3. Hautkontakt mit Aerosolen (Stäube oder Nebel), die aus dem Prozess oder der Endbearbeitung von Erzeugnissen stammen.

Die bisher durchgeführten Versuche zur Hautresorption [14,15] von N-Nitrosaminen zeigen, dass sie gut über die Haut aufgenommen und in den Körper gelangen können.

3.3 Ermittlung und Beurteilung der Exposition

3.3.1 Beurteilungsmaßstäbe für N-Nitrosamine

- (1) Auf der Grundlage der Informationsermittlung (Nummer 3.1) wird die Exposition unter Berücksichtigung der vorhandenen Schutzmaßnahmen ermittelt und anhand der Beurteilungsmaßstäbe bewertet. Für krebserzeugende N-Nitrosamine der Kategorien 1A und 1B können keine gesundheitsbasierten Arbeitsplatzgrenzwerte angegeben werden, bei deren Einhaltung eine krebserzeugende Wirkung ausbleibt. Zur Beurteilung der Schutzmaßnahmen sind für diese Verbindungen daher keine gesundheitsbasierten Arbeitsplatzgrenzwerte (AGW), sondern risikobezogene Toleranz- (TK) und Akzeptanzkonzentrationen (AK) vorgesehen.
- (2) Bei Unterschreitung der Akzeptanzkonzentration ist die Notwendigkeit zusätzlicher Schutzmaßnahmen gering. Bei Einhaltung der Toleranzkonzentration sind Schutzmaßnahmen erforderlich, um die Akzeptanzkonzentration und das damit verbundene Schutzniveau zu erreichen. Bei Überschreitung der Toleranzkonzentration besteht die dringende Notwendigkeit zusätzlicher Maßnahmen (siehe Nummer 4).

3.3.2 Beurteilung der inhalativen Exposition

- (1) Für krebserzeugende N-Nitrosamine liegt nur für N-Nitrosodimethylamin (NDMA) eine toxikologisch begründete Akzeptanz- und Toleranzkonzentration vor.
- (2) Die Toleranzkonzentration für NDMA beträgt 0,75 µg/m³ und die Akzeptanzkonzentration 0,075 µg/m³ (siehe TRGS 910 "Risikobezogenes Maßnahmenkonzept für Tätigkeiten mit krebserzeugenden Gefahrstoffen").
- (3) In Ermangelung anderer toxikologisch begründeter Beurteilungsgrundlagen wird der Wert für die Akzeptanz- und die Toleranzkonzentration auch auf andere

krebserzeugende N-Nitrosamine übertragen 14.

- (4) Um die Gesamtbelastung durch verschiedene N-Nitrosamine, die am Arbeitsplatz gleichzeitig auftreten zu begrenzen, darf die Summe der Konzentrationen der in der Luft am Arbeitsplatz auftretenden N-Nitrosamine einen Wert von $0.75~\mu g/m^3$ nicht überschreiten. Damit wird die Überschreitung dieses Summenwerts oder der Konzentration von $0.75~\mu g/m^3$ für ein einzelnes N-Nitrosamin einer Überschreitung der Toleranzkonzentration gleichgestellt.
- (5) Die Summe der Konzentrationen der in der Luft am Arbeitsplatz auftretenden N-Nitrosamine ist durch Verbesserung der Schutzmaßnahmen unter die Konzentration von $0,075~\mu g/m^3$ als Summenwert zu reduzieren. Damit wird die Überschreitung dieses Summenwerts oder der Konzentration von $0,075~\mu g/m^3$ für ein einzelnes N-Nitrosamin einer Überschreitung der Akzeptanzkonzentration gleichgestellt.
- (6) Für die Berechnung der Summenwerte sind ausschließlich Messergebnisse größer oder gleich der Bestimmungsgrenze heranzuziehen.
- (7) Überschreitungsfaktor, Kurzzeitwerte: Der Überschreitungsfaktor bestimmt die maximal zulässige zeitlich begrenzte Überschreitung der Toleranzkonzentration in einer Arbeitsschicht von acht Stunden, wenn in der übrigen Zeit keine Exposition vorliegt. Er wird als Überschreitungsfaktor 8 angegeben und bezieht sich auf einen Zeitraum von 15 Minuten. Die folgende Tabelle enthält die maximal zulässigen Konzentrationen in Abhängigkeit von der Expositionszeit. Diese Konzentrationen gelten für eine Kurzzeitwertphase und können maximal viermal pro Schicht auftreten. Nähere Informationen enthält die TRGS 910.

Tabelle 2: Beurteilungsmaßstäbe für Kurzzeitexpositionen (KZE)

	Expositionsdauer in Minuten					
	15	30	60	120		
Beurteilungsmaßstab ¹⁵ KZE in µg/m³	6	3	1,5	0,75		

3.3.3 Beurteilung der dermalen Exposition

- (1) Ist bei Tätigkeiten mit krebserzeugenden N-Nitrosaminen prozessbedingt ein Hautkontakt ausgeschlossen, so liegt ein geringes Risiko vor. Da N-Nitrosamine gängige Handschuhmaterialien leicht durchdringen, kann auch beim Tragen von Handschuhen ein Hautkontakt nicht ausgeschlossen werden.
- (2) Liegt bei Tätigkeiten mit krebserzeugenden N-Nitrosaminen nur ein unbeabsichtigter oder seltener Hautkontakt vor und werden die Gefahrstoffe unverzüglich entfernt, so liegt ein mittleres Risiko vor. Dies ist typischerweise der Fall, wenn Schutzhandschuhe nach Nummer 4.5 getragen werden und
- 1. bei flüssigen nitrosaminhaltigen Medien die Handschuhe unmittelbar nach

Für das potentere N-Nitrosodiethylamin (NDEA) ist auch bei Einhaltung dieser Werte ein erhöhtes Risiko nicht auszuschließen. Spielt der Gehalt an NDEA eine wesentliche Rolle, ist eine weitere Absenkung der Exposition im Sinne des Minimierungsgebotes anzustreben.

¹⁵ Für TK sind die Einzel- und Summenwerte nach Nummer 3.3.2 Absatz 4 anzuwenden.

- auftretenden Spritzern gewechselt und fachgerecht entsorgt werden,
- 2. bei Granulaten, Pulvern, Schleifstäuben und mit Flüssigkeiten benetzten Erzeugnissen der Kontakt 15 Minuten in der Schicht nicht überschreitet, bevor die Handschuhe gewechselt werden,
- 3. bei anderen Feststoffen (Blockware, Rohgummi, Erzeugnisse), die nicht mit Flüssigkeiten benetzt sind, die Handschuhe maximal bis zur Tragezeit für die begleitenden Gefahrstoffe bzw. Amine verwendet werden (siehe Nummer 4.5)

und ein gleichwertiger Schutz für die weiteren Hautflächen gegeben ist.

- (3) Liegt bei Tätigkeiten mit krebserzeugenden N-Nitrosaminen ein regelmäßiger oder gelegentlicher Hautkontakt ohne unverzügliche Entfernung der Gefahrstoffe vor, so liegt ein hohes Risiko vor. Dies ist typischerweise der Fall, wenn nitrosaminhaltige Gemischen oder Erzeugnisse ohne Schutzhandschuhe mit den Händen berührt werden oder beim Tragen von Schutzhandschuhen
- 1. bei flüssigen Medien Spritzer auf Handschuhen verbleiben oder Tätigkeiten in diesen Medien durchgeführt werden,
- 2. Schutzhandschuhe keine ausreichende Schichtdicke (siehe Nummer 4.5) besitzen oder unter den Arbeitsbedingungen mechanisch instabil sind oder keinen ausreichenden Schutz gegenüber den begleitenden Gefahrstoffen besitzen,
- 3. Hautkontakt mit nitrosaminhaltigen abgelagerten Stäuben (siehe Nummer 3.3 Absatz 2) oder Flüssigkeiten im Arbeitsbereich auftritt.
- (4) Da verschiedene weitere Faktoren die Aufnahme über die Haut mit beeinflussen, können nach näherer Untersuchung im Einzelfall auch von den Absätzen 1 bis 3 abweichende Risiken begründet werden.

3.3.4 Befunderhebung

- (1) Ist die Akzeptanzkonzentration nach den in Nummer 3.3.2 angegebenen Kriterien unterschritten und liegt nach Nummer 3.3.3 nur ein geringes Risiko vor, so ist die Notwendigkeit zusätzlicher Schutzmaßnahmen gering. Der Arbeitgeber dokumentiert den Befund¹¹ "Akzeptanzkonzentration eingehalten" in der Gefährdungsbeurteilung. Er führt abschließend Maßnahmen nach Nummer 5 zur Sicherstellung der Wirksamkeit und Funktion der Schutzmaßnahmen durch.
- (2) Liegt nach den in Nummer 3.3.2 angegebenen Kriterien die Exposition zwischen der dort angegebenen Akzeptanz- und Toleranzkonzentration oder liegt nach Nummer 3.3.3 ein mittleres Risiko vor, sind weitergehende Schutzmaßnahmen nach Nummer 4 notwendig, um die Nitrosaminbelastungen zu minimieren Die Maßnahmen sind in der Gefährdungsbeurteilung zusammen mit dem Befund "Toleranzkonzentration eingehalten" zu dokumentieren und es sind Maßnahmen nach Nummer 5 zur Sicherheit und Funktion der Schutzmaßnahmen durchzuführen.
- (3) Stellt der Arbeitgeber nach den in Nummer 3.3.2 angegebenen Kriterien fest, dass die Exposition über der Toleranzkonzentration liegt oder nach Nummer 3.3.3 ein hohes Risiko vorliegt, lautet der Befund "Toleranzkonzentration überschritten" und ist in der Gefährdungsbeurteilung zu dokumentieren. In diesem Fall hat der Arbeitgeber einen Maßnahmenplan zu erstellen, der konkret beschreibt, mit welchen Maßnahmen in welchen Zeiträumen und in welchem Ausmaß eine

weitere Expositionsminderung erreicht werden soll. Der Plan muss auch Maßnahmen beinhalten, mit denen die Gefährdung der Mitarbeiter unmittelbar reduziert wird, z.B. durch Verwendung von Atemschutz.

(4) Bei Tätigkeiten, bei denen belastender Atemschutz dauerhaft getragen werden muss, ist nach § 7 Absatz 5 GefStoffV in Verbindung mit § 19 Absatz 1 GefStoffV eine zeitlich befristete Ausnahme bei der zuständigen Behörde zu beantragen. Eine dauerhafte Benutzung von belastendem Atemschutz im Sinne dieser TRGS liegt vor, wenn für Tätigkeiten innerhalb eines Betriebs Atemschutz voraussichtlich innerhalb von drei Monaten in der Summe länger als 120 Stunden eingesetzt werden muss.

4 Schutzmaßnahmen

4.1 Allgemeine Hinweise

- (1) Zur Minimierung der Nitrosaminbelastungen kommen folgende Maßnahmen zum Einsatz:
- 1. Substitution,
- 2. Allgemeine und verfahrensbezogene Schutzmaßnahmen,
- 3. Technische Schutzmaßnahmen,
- 4. Organisatorische Schutzmaßnahmen,
- 5. Persönliche Schutzmaßnahmen.
- 6. Maßnahmen in speziellen Bereichen.
- (2) N-Nitrosamine treten oft begleitend zu anderen Gefahrstoffen auf, für die ebenfalls Schutzmaßnahmen erforderlich oder bereits vorhanden sind. Je nach Prozess sind diese Schutzmaßnahmen bereits ausreichend oder müssen durch weitere Maßnahmen nach dieser Nummer 4 kombiniert und ergänzt werden.
- (3) Aus diesem Grund können die Hinweise dieser Nummer 4 auch zur Verbesserung bestehender Schutzeinrichtungen dienen.
- (4) Substitution und andere allgemeine und verfahrensbezogene sowie technische Schutzmaßnahmen sind vorrangig auszuschöpfen. Persönliche Schutzmaßnahmen sind nachrangig zum Schutz der Beschäftigten vor verbleibenden Restgefährdungen anzuwenden. Belastende persönliche Schutzmaßnahmen dürfen keine Dauermaßnahme sein.
- (5) Nach Einführung der Schutzmaßnahmen prüft der Unternehmer nach Nummer 5, ob die vorhandenen Schutzmaßnahmen ausreichend sind.
- (6) Allgemeine Schutzmaßnahmen sind Grundsätze für die Verhütung von Gefahren und Grundmaßnahmen nach der TRGS 500¹⁶ "Schutzmaßnahmen". Hierzu gehören unter anderem auch Maßnahmen zur Hygiene. Diese sind bei Tätigkeiten mit Gefahrstoffen immer anzuwenden. Insbesondere dürfen z. B. nitrosaminhaltige Gemische und Erzeugnisse nicht mit Lebensmitteln in Kontakt kommen und es dürfen in Bereichen, in denen eine Exposition gegenüber krebserzeugenden N-Nitrosaminen nicht ausgeschlossen werden kann, keine Lebensmittel und Getränke zu sich genommen werden.

10

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/TRGS-500.html

4.2 Substitution

- (1) Substitution von Gefahrstoffen: Der Arbeitgeber hat zu prüfen, ob Amine und aminbildende Einsatzstoffe, die im Prozess krebserzeugende N-Nitrosaminen bilden, durch Stoffe ersetzt werden können, die keine oder nicht krebserzeugende N-Nitrosamine bilden. Falls sekundäre Amine auf Grund ihrer basischen Eigenschaften z.B. zur Einstellung des pH-Wertes verwendet werden, können sie vielfach auch durch anorganische Verbindungen wie Natrium- oder Kaliumhydroxid, basische lonenaustauscher, tertiäre Amine oder sekundäre Amine, die keine krebserzeugenden N-Nitrosamine bilden (siehe Anhang 2 Tabelle 2), ersetzt werden. Für den Bereich der Gummiindustrie sind Maßnahmen zur Substitution und Schutzmaßnahmen in Anhang 4 zu dieser TRGS aufgeführt.
- (2) Minimierung von nitrosierenden Agenzien: Durch diese Maßnahme kann die Bildung von N-Nitrosaminen unterdrückt oder verhindert werden. Beispiele hierfür sind:
- 1. NOx-Reduzierung von Motorabgasen,
- 2. Auswahl von nitrat- und nitritarmen Rohstoffen,
- 3. Ausschluss oder Ersatz von Sauerstoff bei thermischen Prozessen, in denen Amine vorliegen,
- 4. Zusatz von Inhibitoren als NOx-Fänger zur Verhinderung der N-Nitrosaminbildung,
- 5. Kontrolle der anaeroben oder aber aeroben Bedingungen und ihren Einflussgrößen (O₂, BSB, CSB¹⁷),
- 6. Entkeimung und Desinfizierung bei biologischen Prozessen.

Ein Beispiel eines Inhibitores ist der Zusatz von α -Tocopherol bei der Vulkanisation von Gummi. Maßnahmen zur Reduzierung von NOx in Motorabgasen sind der Ersatz von Verbrennungs- durch Elektromotoren, die Behandlung der Abgase mit Harnstoff oder Ammoniak sowie die Verbesserung der Motorgeometrie. Die Aufrechterhaltung von anaeroben Bedingungen verhindert die biologische Oxidation von Ammoniak und Ammoniumionen. Die Kontrolle der aeroben Bedingungen verhindert die biologische Reduktion von Nitraten. Entkeimung und Desinfizierung können die biologische Nitrosaminbildung (Beispiel Fermentierung) unterdrücken. Maßnahmen zur Reduktion von nitrosen Gasen beim Schweißen und verwandten Verfahren sind in der DGUV Information 209-047 [16] beschrieben. Bei thermischen Verfahren ist eine möglichst gleichmäßige Erwärmung ohne Temperaturspitzen anzustreben. Verfahren, die den Einsatz von Flammen, Rauch oder Befeuerungsanlagen vorsehen, können nach dem Stand der Technik so gestaltet werden, dass die Bildung von nitrosen Gasen minimiert ist. Ein Beispiel ist der Einsatz von Low-NOx-Brennern bei Trocknungsprozessen.

(3) Minimierung von freien Aminen: Beim Einsatz oder der Anwendung von sekundären Aminen sollte der Prozess so gestaltet werden, dass ein vollständiger Verbrauch gewährleistet ist und sie nicht als Überschuss, Nebenprodukt oder Abfall

¹⁷ Zur Überwachung des BSB (Biologischer Sauerstoffbedarf) und CSB (Chemischer Sauerstoffbedarf) stehen kontinuierlich arbeitende Messverfahren zur Verfügung

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de/ags -

verbleiben und so zu einer potentiellen Quelle für die Bildung von N-Nitrosaminen werden. So ist es bei chemischen Reaktionen vielfach möglich, das Amin im stöchiometrischen Unterschuss einzusetzen, so dass kein freies Amin am Ende der Reaktion vorhanden ist.

- (4) Nachbehandlung: N-Nitrosamine, die durch den Herstellungsprozess als Verunreinigungen an der Oberfläche von Erzeugnissen haften, können in der Regel durch Waschen entfernt werden, so dass die Aufnahme von N-Nitrosaminen bei der Endbearbeitung oder dem Gebrauch der Erzeugnisse stark reduziert werden kann. Die Wirksamkeit dieses Verfahrens hängt von verschiedenen Faktoren wie Temperatur, Einwirkungsdauer, Einsatz von Ultraschall und Zusätzen ab. Die Bestrahlung mit UV-Licht [17] oder die Behandlung mit Kaliumferrat [18] ist ein weiteres Verfahren, mit dem N-Nitrosamine in wässrigen und gasförmigen Systemen abgebaut werden können.
- (5) Kontrolle weiterer Parameter: Der pH-Wert, Lösemittel und zusätzliche Stoffe beeinflussen die Bildung von N-Nitrosaminen. In wässrigen Systemen ist die Bildung von N-Nitrosaminen aus sekundären Aminen bei pH-Werten zwischen 3 und 5 begünstigt. Eine weitere Absenkung führt zur Deaktivierung der sekundären Amine durch Protonierung. Umgekehrt ist in nicht wässrigen Systemen die N-Nitrosaminbildung aus sekundären Aminen und nitrosen Gasen bei hohen pH-Werten oft begünstigt, da alle Amine als freie Base vorliegen. Lösemittel, Zweiphasensysteme und Zusätze nehmen Einfluss auf die Reaktion.

4.3 Technische Schutzmaßnahmen

- (1) Einsatz geschlossener Systeme: Prozesse, bei denen es zur Bildung von N-Nitrosaminen kommt, sollen vorrangig in geschlossenen Systemen durchgeführt werden. Zur Gewährleistung der Dichtigkeit dieser Systeme sind verschiedene technische Lösungen verfügbar wie u.a.:
- 1. Transport durch Drucktransfer an Stelle von Pumpen, Verwendung von technisch dichten Pumpen (z.B. Pumpen mit Magnetkupplung),
- 2. Reduzierung der Anzahl von Flanschverbindungnen, Einsatz von technisch dichten Flanschverbindungen mit einer Leckagerate von 10 5 kPa*l/(s*m),
- 3. Hochwertige Abdichtungen von Spindeldurchführungen für Ventile und Schieber und andere Aktuatoren z.B. durch metallische Faltenbälge mit nachgeschalteter Sicherheitsstopfbuchse mit einer maximalen spezifischen Leckagerate von 1 0,4 kPa*I/(s*m),
- 4. Verwendung technisch dichter Rührsysteme mit Mehrfachgleitringdichtungen und Vorlage- oder Sperrmedium.

Weitere technische Maßnahmen sind in der TRGS 500 "Schutzmaßnahmen" aufgeführt.

(2) Öffnen und Befüllen geschlossener Systeme: Beim Öffnen der Systeme, z.B. zur Beschickung oder Entnahme von Produkten, kommt es in der Regel zum Austritt von Prozessabgasen, die N-Nitrosamine und Begleitstoffe enthalten können, insbesondere bei thermischen Verfahren. Dies lässt sich z.B. durch Entgasungen oder Spülungen mit Luft- oder Inertgas verhindern, die prozessbegleitend vor dem Öffnen des Systems stattfinden (siehe auch Absatz 8).

- (3) Weitere Reduzierungen sind durch Absaugungen im Arbeits- bzw. Entnahmebereich, Temperaturabsenkungen oder die zeitliche Beschränkung der Öffnung sowie durch Automatisierung möglich. Die Nitrosaminbelastung der Abluft, die durch das Verspritzen bei der Befüllung von Behältern mit flüssigen Medien von oben auftritt, kann durch Befüllung von unten oder ein Füllrohr stark reduziert werden
- (4) Absaugungen: Bei der Errichtung von Absaugungen sind die Gefahrstoffe möglichst an der Entstehungsstelle zu erfassen und dort abzusaugen. Die Erfassungseinrichtungen sind so zu gestalten, dass eine gezielte Luftführung zur Aufnahme der Gefahrstoffe gewährleistet ist, aber möglichst wenig Falschluft angesaugt wird. Dies wird durch die Anpassung der Geometrie, Anzahl und den Erfassungselemente, oder Teileinhausung der die Ein-Emissionsquellen und die Führung von Luftströmen durch Abdeckungen, Luftleitbleche, Öffnungen und ähnliche Maßnahmen erreicht. Absauggeschwindigkeit und Absaugmenge müssen so angepasst werden, dass die Gefahrstoffe in ihrer räumlichen Ausbreitung und auftretenden Menge ausreichend erfasst werden.
- (5) Bei diskontinuierlichen Verfahren können hohe Absaugleistungen in einem engen Zeitfenster und niedrige Absaugleistungen in der restlichen Zeit erforderlich werden. In diesen Fällen sind ausreichend groß dimensionierte Erfassungselemente oder kombinierte Absaugungen wie z.B. die Kombination von Rand- und Haubenabsaugungen einzusetzen und diese in die Anlagensteuerung zu integrieren.
- (6) Bei der Zusammenfassung von Absaugströmen und Anschluss mehrerer Absaugungen an eine gemeinsame Abgasförderung sind leicht zugängliche oder automatisch einstellbare Schieber oder ähnliche Einrichtungen zur Steuerung und Regelung einzusetzen, damit an jeder Maschine und Anlage die erforderliche Absaugleistung zur Verfügung steht. Die Abluft und Luftführung aus einer vorhandenen Raumventilation ist bei der Auslegung der Absaugungen zu berücksichtigen.
- (7) Falls der Ausfall einer Absaugung zu einer Überschreitung der Toleranzkonzentration (siehe Nummer 3.3.2) im Arbeitsbereich führt, muss dies durch eine Warneinrichtung angezeigt werden. In diesem Fall sind geeignete Maßnahmen zu treffen. Der Prozess sollte beendet und die Maschine bzw. Anlage in den sicheren Zustand gefahren werden. Die betroffenen Beschäftigten haben den Gefahrenbereich unverzüglich zu verlassen.
- (8) Luft- und Gasströme aus Absauganlagen oder Prozessen dürfen nicht in die Arbeitsbereiche zurückgeführt werden, es sei denn, dass berufsgenossenschaftlich oder behördlich anerkannte Verfahren angewendet werden (§ 10 Absatz 5 GefStoffV bzw. TRGS 560 "Luftrückführung bei Tätigkeiten mit krebserzeugenden, erbgutverändernden und fruchtbarkeitsgefährdenden Stäuben").
- (9) Abgesaugte Luft ist durch Frischluftzufuhr auszugleichen, die nach Möglichkeit in Körperhöhe im rückwärtigen Teil des Arbeitsbereiches des Beschäftigten zuzuführen ist, so dass Beschäftigte sich in der Regel zwischen Luftzuführung und Absaugung aufhalten. Sie ist über eine ausreichende Anzahl an Zuführungen und Öffnungen so zuzuführen, dass Zugerscheinungen nicht auftreten. Werden Tätigkeiten unmittelbar im Luftstrom ausgeführt, kann es zu Verwirbelungen kommen, die Gefahrstoffe nicht vom Beschäftigten weg, sondern in dessen Atembereich leiten. In diesem Fall ist eine seitliche Position des Beschäftigten zu bevorzugen oder es sind andere Parameter wie der Abstand zur Absaugung und die

Absaugleistung anzupassen. Verbrauchte Luft aus der Raumventilation ist vorzugsweise im Deckenbereich abzuführen (Schichtlüftung).

- (10) Bestimmungsgemäße Verwendung von Maschinen und Anlagen: Der vom Hersteller vorgesehene bestimmungsgemäße Gebrauch von Maschinen und Anlagen berücksichtigt in der Regel nicht das prozessbedingte Auftreten von N-Nitrosaminen. Falls diese Maschinen und Anlagen bereits beim Inverkehrbringen über Erfassungselemente oder Absaugungen verfügen, sind diese mit den vom Hersteller angegebenen Kenngrößen anzuschließen. Wird bei der Prüfung nach Nummer 3.3 festgestellt, dass die vorhandenen Schutzeinrichtungen von Maschinen und Anlagen nicht ausreichen, so sind diese z.B. durch Verbesserung der Erfassungselemente zu optimieren oder weitere technische Schutzmaßnahmen nach diesem Abschnitt ergänzend anzuwenden.
- (11) Falls Stoffe, Gemische oder Erzeugnisse zeitnah zur Fertigung aus der Oberfläche N-Nitrosamine in die Atemluft emittieren, sind abgesaugte oder geschlossene Zonen vorzusehen, in denen die Produkte ausgasen können. In ähnlicher Weise sind Lager durch Einsatz von Behältern und Absaugungen oder gleichwertigen Maßnahmen so zu betreiben, dass es nicht zu erhöhten Innenraumbelastungen kommt.
- (12) Bei der Inbetriebnahme von Absaugungen sind diese zu prüfen und die Prüfung zu dokumentieren. Dies umfasst bei der erstmaligen Inbetriebnahme die Aufstellung einer Luftbilanz mit Angabe der Zu- und Abluft des Arbeitsbereiches sowie ergänzend Messungen zur Wirksamkeitskontrolle der Absaugungen an den einzelnen Maschinen und Anlagen. Die Wirksamkeit ist gemäß der Gefährdungsbeurteilung und den Herstellerangaben mindestens alle 3 Jahre zu überprüfen (siehe Nummer 5).
- (13) Technische Schutzmaßnahmen zur Vermeidung von Hautkontakt: Maschinen und Anlagen, Aggregate und Verrohrungen mit flüssigen nitrosaminhaltigen Prozessmedien sind so auszulegen, dass sie möglichst ohne Rest- und Totvolumen der Prozessmedien entleert und durch Spülung gereinigt werden können. Zur Vermeidung von Leckagen sind tropffreie, selbstschließende Kupplungen und Hähne einzusetzen. Sie sind zu unterwannen, um bei einem möglichen Austritt Leckagen vollständig aufzufangen und zu entsorgen. Arbeitsverfahren, bei denen ein Hautkontakt mit flüssigen nitrosaminhaltigen Medien mit Überschreitung der in Anhang 2 Tabelle 1 angegebenen Konzentrationsgrenzen wahrscheinlich ist, sind nicht zulässig und müssen auch beim Einsatz von Schutzhandschuhen geändert werden, da diese nur eine eingeschränkte Schutzwirkung besitzen (siehe Nummer 4.5)¹⁸. So ist ein vorgesehener manueller Eingriff z.B. durch manuelle Hilfsmittel oder Werkzeuge so zu ändern, dass ein direkter Hautkontakt mit den Medien ausgeschlossen ist.

4.4 Organisatorische Schutzmaßnahmen

(1) Der Arbeitgeber hat Mitarbeiter, in deren Arbeitsbereich krebserzeugende N-Nitrosamine auftreten vor Aufnahme der Tätigkeit und danach mindestens einmal jährlich über die Gesundheitsgefahren und Schutzmaßnahmen und die Vorgehensweise bei Störungen zu unterweisen.

¹⁸ Dies ist insbesondere der Fall, wenn nitrosaminhaltige Gemische verspritzt oder in Sprühverfahren eingesetzt werden.

- (2) Der Arbeitgeber hat bei Exposition gegenüber krebserzeugenden N-Nitrosaminen zu gewährleisten, dass die Beschäftigten oder deren Vertreter
- nachprüfen können, ob die Regelungen der GefStoffV und die Bestimmungen dieser TRGS zur Gefährdungsbeurteilung und zur Festlegung der Schutzmaßnahmen Anwendung finden und
- 2. Einsicht in Aufzeichnungen der Expositionshöhe soweit vorhanden und Auskunft über deren Bedeutung erhalten.
- (3) Der Arbeitgeber hat nach § 14 Absatz 3 Nr. 3 und 4 GefStoffV ein Verzeichnis über die Beschäftigten zu führen, bei denen bei Tätigkeiten mit krebserzeugenden N-Nitrosaminen eine gesundheitliche Gefährdung gegeben ist. Konkrete Hinweise hierzu enthält die TRGS 410 "Expositionsverzeichnis bei Gefährdung gegenüber krebserzeugenden oder keimzellmutagenen Gefahrstoffen der Kategroien 1A oder 1B."
- (4) Bei vorhandenen Staubablagerungen oder biogenen Abfällen hat der Arbeitgeber deren Entfernung zu organisieren und stellt für die Lagerung von Abfällen verschließbare Behälter in ausreichender Menge zur Verfügung. Staubablagerungen sind unter Vermeidung von Aufwirbelungen z.B. durch Reinigen mit Industriestaubsaugern der Staubklasse H oder Nasswischen zu entfernen.
- (5) Die Begrenzung der Dauer der Exposition und der Anzahl der Beschäftigten im exponierten Bereich sind weitere Maßnahmen, die zum Erreichen und Unterschreiten der Akzeptanzkonzentration oder bei kurzfristigen Tätigkeiten mit höherer Konzentration nachrangig zu technischen Maßnahmen angewendet werden können. Nummer 3.3.2 Absatz 7 enthält eine Tabelle mit den zulässigen Expositionszeiten bei erhöhter Konzentration. Voraussetzung für diese Maßnahmen ist, dass die auftretenden Konzentrationen und ihre Schwankungen bekannt sind.

4.5 Persönliche Schutzmaßnahmen

- (1) Persönliche Schutzmaßnahmen sind nachrangig zum Schutz der Beschäftigten vor verbleibenden Restgefährdungen anzuwenden. Belastende persönliche Schutzmaßnahmen dürfen keine Dauermaßnahme sein.
- (2) Atemschutz: Für nitrosaminhaltige Gase kann ein Filter vom Typ A eingesetzt werden. Für feste und flüssige Partikel sind Filter vom Typ P2 und P3 geeignet, wobei die Eignung bei flüssigen (tröpfchenförmigen) Partikeln vom Hersteller angegeben sein muss. Liegen die N-Nitrosamine sowohl als Dampf als auch partikelförmig vor, so sind Kombinationsfilter wie A2(3)P2(3) einzusetzen, beim Vorliegen von nitrosen Gasen Filter vom Typ A3NOP3.
- (3) Es eignen sich Halb- und Vollmasken sowie gebläseunterstützte Masken oder Hauben als Atemanschluss¹⁹. Gebläseunterstützte Atemschutzgeräte gewähren einen höheren Komfort und eine geringere Belastung. Atemschutzhelme oder hauben mit Filtern und Gebläse sollen bei krebserzeugenden Stoffen nicht ohne Warneinrichtung zur Funktionskontrolle verwendet werden²⁰. Nähere Angaben zum Einsatz von Atemschutz bei Tätigkeiten mit Expositionsspitzen im Bereich des

Beim Auftreten von Stäuben und Aerosolen sind Halbmasken wegen der Hautbelastung weniger geeignet.

Weitere Informationen zur Auswahl und den Einsatzbedingungen sind in der DGUV-Regel 112-190 "Benutzung von Atemschutzgeräten" aufgeführt. (https://www.arbeitssicherheit.de/de/html/library/document/4988981,1)

mittleren Risikos sind in der TRGS 910 aufgeführt. Bei längeren Belastungen über der Toleranzkonzentration (siehe Nummer 3.3.4) sind bevorzugt umgebungsluftunabhängige Atemschutzgeräte einzusetzen.

- (4) Bisherige Untersuchungen mit verschiedenen nitrosaminhaltigen verdünnten Lösungen haben gezeigt, dass gängige Handschuhmaterialien leicht durchdrungen werden und bei flüssigen Medien nur eine kurzfristige Schutzwirkung entfalten [19,20]. In erster Näherung können Schutzhandschuhe verwendet werden, die für die den N-Nitrosaminen zugrundeliegenden Amine geeignet sind. Falls keine weiteren Informationen vorliegen sind chemikalienbeständige Schutzhandschuhe geprüft nach EN 16523 vorzugsweise mit dem Permeationslevel 6 aus folgenden Materialien zu tragen:
 - 1. Nitrilkautschuk (0,4 mm),
 - 2. Chloroprenkautschuk (0,5 mm),
 - 3. Polyvinylchlorid (0,7 mm).
- (5) Der Schutz hängt auch davon ab, inwieweit das Material auch gegenüber den begleitenden Gefahrstoffen geeignet ist. Kontaminierte Handschuhe müssen sofort gewechselt werden. Bei Tätigkeiten mit unbenetzten Erzeugnissen und Feststoffen (z.B. Pulver, Granulate, Abfälle, Rohgummi), die mit N-Nitrosaminen verunreinigt sind, können die auf Amine bezogenen Angaben des Herstellers für die Tragedauer angewendet werden.

5 Überprüfung der Funktion und Wirksamkeit von Schutzmaßnahmen

- (1) Der Arbeitgeber hat sich auf Grundlage der Gefährdungsbeurteilung in angemessenen Abständen, mindestens einmal im Jahr von der Umsetzung der Maßnahmen einschließlich der organisatorischen Schutzmaßnahmen zu überzeugen. Er dokumentiert die dabei festgestellten Mängel und veranlasst ihre Beseitigung.
- (2) Der Arbeitgeber hat auf Grundlage der Gefährdungsbeurteilung und Herstellerangaben für die technischen Schutzmaßnahmen einen Prüf- und Wartungsplan festzulegen und dokumentiert ihn.
- (3) Funktionsprüfung von Sicherheitseinrichtungen: Die Funktion der Absaugungen und ihre Erfassungselemente, das Not-Halt-System sowie Einrichtungen zur Erkennung oder Abwehr von gefährlichen Betriebsstörungen müssen bei der Einrichtung der Arbeitsplätze und dann in angemessenen Abständen, in der Regel einmal jährlich geprüft, gewartet und gegebenenfalls in Stand gesetzt werden. Dabei sind die vom Hersteller angegebenen Zeitabstände zu berücksichtigen. Das Ergebnis dieser Prüfung ist schriftlich zu dokumentieren. Die Prüfung der Einrichtungen und Maßnahmen zum Brand- und Explosionsschutz richten sich nach der TRGS 800 "Brandschutzmaßnahmen"²¹ bzw. der TRBS 1201 Teil 1²².
- (4) Wirksamkeitsprüfung von Sicherheitseinrichtungen: Der Arbeitgeber hat die Wirksamkeit der technischen Schutzmaßnahmen z.B. der Absaugungen und ihre Erfassungselemente regelmäßig, mindestens jedoch einmal in 3 Jahren zu

https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRGS/pdf/TRGS-800.pdf
 https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBS/TRBS-1201-Teil-1.html

überprüfen und die Prüfungen zu dokumentieren (siehe § 7 Absatz 7 GefStoffV). Um die Wirksamkeit der Absaugungen zu überprüfen führt der Arbeitgeber bei Tätigkeiten mit krebserzeugenden N-Nitrosaminen vorzugsweise die in Anhang 3 beschriebenen Messungen nach TRGS 402 durch^{23.} Bei Änderung des Verfahrens, der Anlage oder der Einrichtung ist die Wirksamkeit der Schutzmaßnahmen erneut zu überprüfen.

(5) Die Persönliche Schutzausrüstung ist vom Beschäftigten vor jeder Benutzung auf erkennbare Mängel zu prüfen und bei Beschädigung vom Arbeitgeber vor der nächsten Benutzung zu ersetzen. Der Arbeitgeber hat unter Berücksichtigung der Herstellerangaben und der Beanspruchung festzulegen, nach welcher Einsatzzeit bzw. Tragedauer die persönliche Schutzausrüstung (Chemikalienschutzhandschuhe, Atemschutzfilter) ersetzt werden muss und welche Wartungen und Funktionsprüfungen durchzuführen sind. Er hat die Prüfungsergebnisse zu dokumentieren.

6 Arbeitsmedizinische Prävention

6.1 Beteiligung des Betriebsarztes an der Gefährdungsbeurteilung und Erkenntnisse aus der arbeitsmedizinischen Vorsorge

- (1) Bei Tätigkeiten mit N-Nitrosaminen soll der Betriebsarzt bzw. der mit der arbeitsmedizinischen Vorsorge beauftragte Arzt bei der Erstellung der Gefährdungsbeurteilung beteiligt werden.
- (2) Im Vordergrund der Beteiligung steht die Beratung des Arbeitgebers zu den relevanten medizinischen Fragestellungen. Dies betrifft insbesondere Fragen der krebserzeugenden Eigenschaften der N-Nitrosamine sowie möglicher dermaler Belastungen, der Substitutionsprüfung, des Einsatzes und der Auswahl persönlicher Schutzausrüstung.
- (3) Ergeben sich aus der arbeitsmedizinischen Vorsorge oder anderen Hinweisen Anhaltspunkte dafür, dass die Maßnahmen des Arbeitsschutzes für die Beschäftigten nicht ausreichen, so hat der mit der arbeitsmedizinischen Vorsorge beauftragte Arzt dies dem Arbeitgeber nachvollziehbar mitzuteilen und Maßnahmen des Arbeitsschutzes vorzuschlagen. Dies erfolgt unter Einhaltung der ärztlichen Schweigepflicht.

6.2 Arbeitsmedizinisch-toxikologische Beratung im Rahmen der Unterweisung

(1) Bei Tätigkeiten mit N-Nitrosaminen hat der Arbeitgeber sicherzustellen, dass die Beschäftigten eine allgemeine arbeitsmedizinisch-toxikologische Beratung erhalten. Diese Beratung erfolgt im Rahmen der Unterweisung. Dabei sind die Beschäftigten in einer für sie verständlichen Form über mögliche gesundheitliche Schäden durch eine Exposition gegenüber N-Nitrosaminen zu informieren. Ziel ist es, die Beschäftigten dafür zu sensibilisieren, die erforderlichen Schutzmaßnahmen umfassend und richtig anzuwenden. Inhalt der Beratung ist es auch, Sofortmaßnahmen und besondere Maßnahmen der Ersten Hilfe zu erläutern und die Beschäftigten über ihre Ansprüche auf Angebots- und Wunschvorsorge sowie evtl.

Bisher liegen keine validierten nicht messtechnischen Ermittlungsmethoden wie z.B. Berechnungsverfahren zur Ermittlung der inhalativen Belastung durch N-Nitrosamine nach der TRGS 402 vor, so dass in der Regel Messungen erforderlich sind.

erforderliche Pflichtvorsorge hinzuweisen. Die Beratung beinhaltet daher insbesondere Ausführungen zu folgenden Punkten:

- 1. Aufnahmewege von N-Nitrosaminen über die Atemwege (inhalativ), über die Haut (dermal) oder durch Hand-Mundkontakt (oral),
- 2. mögliche Folgen einer Aufnahme auf den Menschen,
- 3. Minimierung der Gesundheitsrisiken durch die bestimmungsgemäße Verwendung der Arbeitsmittel und die Umsetzung der in der Betriebsanweisung festgelegten Schutzmaßnahmen einschließlich der persönlichen Schutzausrüstung und der Arbeitshygiene,
- 4. Gefahren durch die Aufnahme von Nahrungs- und Genussmitteln in exponierten Bereichen oder nicht ausreichender Händehygiene,
- 5. Verstärkung der nachteiligen Wirkung durch fortgesetztes Zigarettenrauchen,
- 6. medizinischen Aspekte des Gebrauchs von persönlicher Schutzausrüstung (z. B. Schutzhandschuhe, Schutzkleidung, Atemschutz) einschließlich Handhabung, maximale Tragzeiten und Wechselturnus, mögliche Belastungen und Beanspruchungen durch persönliche Schutzausrüstung,
- 7. Problematik der Feuchtarbeit einschließlich der Hautschutz- und Hautpflegemaßnahmen soweit für die Tätigkeit relevant.
- (2) Ob die Beteiligung des mit der arbeitsmedizinischen Vorsorge beauftragten Arztes an der Beratung erforderlich ist, ist im Rahmen der Gefährdungsbeurteilung zu entscheiden.

6.3 Arbeitsmedizinische Vorsorge

- (1) Die allgemeinen Vorgaben in Nummer 4 der AMR 3.2 sind zu berücksichtigen. Der folgende Absatz enthält hierzu spezielle Ausführungen. Unberührt bleiben Vorgaben in anderen Arbeitsmedizinischen Regeln, insbesondere in der AMR "Abweichungen nach Anhang Teil 1 Absatz 4 ArbMedVV bei Tätigkeiten mit krebserzeugenden oder keimzellmutagenen Gefahrstoffen der Kategorie 1A oder 1B" (AMR 11.1).
- (2) Vorsorgeanlässe für die in dieser Technischen Regel angesprochenen Tätigkeiten und Gefährdungen sind insbesondere:

1. Pflichtvorsorge

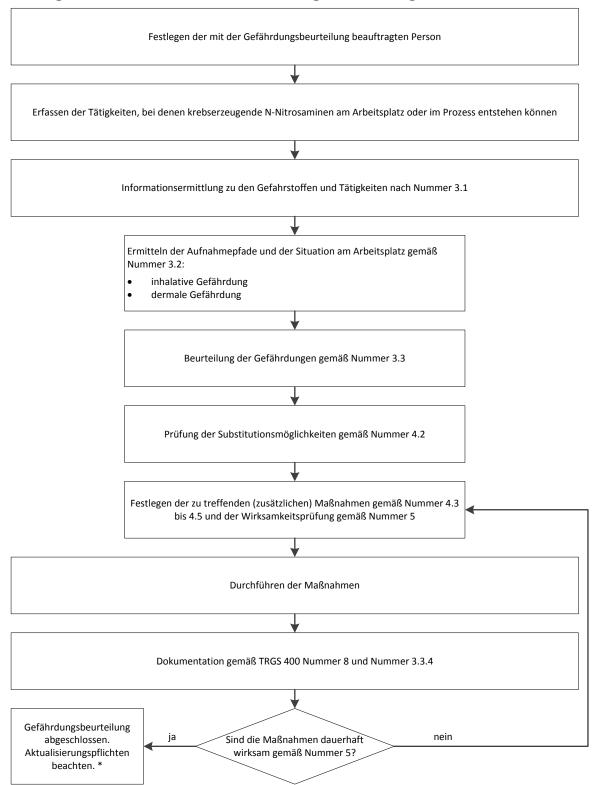
- a) bei Feuchtarbeit von regelmäßig vier Stunden oder mehr je Tag (Anhang Teil 1 Absatz 1 Nummer 2 Buchstabe a ArbMedVV),
- b) wenn die Tätigkeiten mit N-Nitrosaminen das Tragen von Atemschutzgeräten der Gruppe 2 oder 3 erfordern (Anhang Teil 4 Absatz 1 Nummer 1 ArbMedVV).

2. Angebotsvorsorge

- a) wenn eine wiederholte Exposition gegenüber N-Nitrosaminen nicht ausgeschlossen werden kann (Anhang Teil 1 Absatz 2 Nummer 2 Buchstabe d Doppelbuchstabe aa ArbMedVV; die in dieser Technischen Regel angesprochenen N-Nitrosamine sind als krebserzeugend Kategorie 1B im Sinne der Gefahrstoffverordnung eingestuft),
- b) bei Feuchtarbeit von regelmäßig mehr als zwei, aber weniger als vier

TRGS 552 - Seite 19 von 36 (Fassung 31.10.2018)

Stunden je Tag (Anhang Teil 1 Absatz 2 Nummer 2 Buchstabe e ArbMedVV),


- c) wenn die Tätigkeiten mit N-Nitrosaminen das Tragen von Atemschutzgeräten der Gruppe 1 erfordern (Anhang Teil 4 Absatz 2 Nummer 2 ArbMedVV),
- d) nach Beendigung der Tätigkeit mit Exposition gegenüber N-Nitrosaminen (Anhang Teil 1 Absatz 3 ArbMedVV; die in dieser Technischen Regel angesprochenen N-Nitrosamine sind als krebserzeugend Kategorie 1B im Sinne der Gefahrstoffverordnung eingestuft).

Literatur

- 1 Hill, M. J.: Nitrosamines, VCH Verlagsgesellschaft 1988
- 2 U.S. Department of Health and Human Services: Nitrosamines, Report on Carcinogens, 14. Ausgabe, 2016, U.S. Department of Health and Human Services
- Douglass, M.L.; Kabacoff, B.L.; Anderson, G.A.; Cheng, M.C.: The chemistry of nitrosamine formation, inhibition and destruction; J. Soc. Cosmet. Chem., 1978, S. 581 - 606
- 4 Spiegelhalder, B.; Eisenbrand, G.; Preussmann, R.: Contamination of Amines with N-Nitrosamines; Angewandte Chemie, 1978, S. 367 368
- 5 Nitrosamines, Données technico-économiques sur les substances chimiques en France DRC-14-136881-01291A, INERIS 2014, S. 12
- 6 Bontoyan, W.R.; Law, M.W.; Wright Jr., D.P.: Nitrosamines in Agricultural and Home-Use Pesticides, J. Agric. Food. Chem., 1979, S. 631 ff.
- Venkatesan, A.K.; Pycke, F.G.; Halden, R.U.; Detection and Occurence of N-Nitrosamines in Arcived Biosolids from the Targeted National Sewage Sludge, Survey of U.S. Environmental Protection Agency; Environ. Sci. Technol, 2014, S. 5085 - 5092
- 8 Controlling the Formation of Nitrosamines During Water Treatment; Water Research Foundation, EPA, 2015, SSBN 978-1-60573-217-6
- 9 Choi, J. and R. L. Valentine. 2001. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product; Water Research., 2001, S. 817-824
- 10 Brain KR.; Walters KA; James VJ; Dressler WE; Howes D., Kelling CK., Moloney SJ., Gettings SD: Percutaneous penetration of dimethyl-nitrosamine through human skin in vitro: application from cosmetic vehicles; Food Chem Toxicol., 1995, S. 315-322
- 11 Voice, A.; Hill, A.; Fine, N. A.; Rochelle, G.T.: Nitrosamine formation and mitigation in blended amines for CO2 capture; International Journal Greenhouse Gas Control, 2015, S. 329 334
- 12 Jira, W.; Chemische Vorgänge beim Pökeln und Räuchern; Mitteilungsblatt Bundesanstalt für Fleischforschung, 2004, S. 27 38
- 13 Etienne, M.; Nantes, I.: Volatile amines as criteria for chemical quality assesment, Seafoodplus, Projektbericht 6.3 France 2005
- 14 Brain KR1, Walters KA, James VJ, Dressler WE, Howes D, Kelling CK, Moloney SJ, Gettings SD: Percutaneous penetration of dimethylnitrosamine through human skin in vitro: application from cosmetic vehicles; Food Chem Toxicol. 1995; S. 315 322
- 15 Franz TJ1, Lehman PA, Franz SF, North-Root H, Demetrulias JL, Kelling CK, Moloney SJ, Gettings SD: Percutaneous penetration of N-nitrosodiethanolamine through human skin (in vitro): comparison of finite and infinite dose applications from cosmetic vehicles; Fundam Appl Toxicol., 1993, S. 213-221

- 16 DGUV Information 209-047 Nitrose Gase beim Schweißen und verwandten Verfahren, 2017
- 17 Daniel L. McCurry, Krasner, S.W., Mitch W.A.: Control of nitrosamines during non-potable and de facto wastewater reuse with medium pressure ultraviolet light and preformed monochloramine; Environ. Sci.: Water Res. Technol., 2016, S. 502 510
- 18 Bartzatt, R.; Nagel, D.: Removal of nitrosamines from waste water by potassium ferrate oxidation; Arch. Environ. Health., 1991, S. 313 -315
- 19 Sansone, E.B.; Tewari, Y.B.; The permeability of laboratory gloves to selected nitrosamines; IARC Scientific Publication 19, 1978, S. 517 529
- 20 Gough, T.A.; Webb, K.S.; McPhail, M.F.: Diffusion of nitrosamines through protective gloves; IARC Scientific Publication 19, 1978, S. 531 -534

Anhang 1: Ablaufschema der Gefährdungsbeurteilung

^{*} Gemäß Nummer 4 Absatz 4 der TRGS 400 muss die Gefährdungsbeurteilung in regelmäßigen Abständen und bei gegebenem Anlass überprüft und ggf. aktualisiert werden; das Überprüfungsintervall ist vom Arbeitgeber festzulegen.

Anhang 2: Stofflisten

Dieser Anhang enthält tabellarische Stoffinformationen mit krebserzeugenden und nicht krebserzeugenden N-Nitrosaminen sowie zu Aminen, die krebserzeugende N-Nitrosamine bilden

Tabelle 1: Krebserzeugende N-Nitrosamine

Name ²⁴	CAS-Nummer	K	Konzentrationsgrenzen in Gemischen (Gewichtsanteile) ²⁵
N-Nitrosodibutylamin	924-16-3	1B	0,0001
N-Nitrosodiethylamin	55-18-5	1B	0,0001
N-Nitrosoethylphenylamin	612-64-6	1B	0,0001
2,2'-(Nitrosoimino)bisethanol	1116-54-7	1B	0,0005
N-Nitrosodimethylamin	62-75-9	1B	0,0001
N-Nitrosomethylethylamin	10595-95-6	1B	0,0001
N-Nitrosomethylphenylamin	614-00-6	1B	0,0001
N-Nitrosomorpholin	59-89-2	1B	0,0001
N-Nitrosopiperidin	100-75-4	1B	0,0001
N-Nitrosodipropylamin	621-64-7	1B	0,0001
N-Nitrosodi-i-propylamin	601-77-4	1B	0,0005
N-Nitrosopyrrolidin	930-55-2	1B	0,0005

Tabelle 2: Nicht krebserzeugende N-Nitrosamine

Name	CAS-Nummer
N-Nitrosomethyl-t-butylamin	2504-18-9
N-Nitrosodibenzylamin	5336-53-8
N-Nitrosodicyclohexylamin	947-92-2
N-Nitrosoethyl-t-butylamin	3398-69-4
N-Nitrosobutyl-t-butylamin	31820-20-9
N-Nitrosodiallylamin	16338-97-9
N-Nitrosoprolin	7519-36-0
3-(N-Nitrosomethylamino)pyridin	69658-91-9
4-(N-Nitrosomethylamino)pyridin	16219-99-1
N,N'-Dinitrosopentamethylentetramin	101-25-7

Tabelle 3: Amine, die krebserzeugende N-Nitrosamine bilden

Name	CAS-Nummer
Dibutylamin	111-92-2
Diethanolamin (2,2'-Iminodiethanol)	111-42-2
Diethylamin	109-89-7
Diisopropylamin	108-18-9
Dimethylamin	124-40-3
Dipropylamin	142-84-7
Ethylphenylamin (N-Ethylanilin)	103-69-5
Methylethylamin (Ethylmethylamin)	624-78-2
Methylphenylamin (N-Methylanilin)	100-61-8
Morpholin	110-91-8
Piperidin	110-89-4
Pyrrolidin	123-75-1

Die Namensgebung erfolgt nicht einheitlich, so bezeichnen N-Nitrosodiethylamin und N-Diethylnitrosamin die gleiche Verbindung (Tabelleneintrag 2)

²⁵ Bei Überschreitung der angegebenen Konzentrationsgrenze für ein Nitrosamin in einem Gemisch ist dieses Gemisch als krebserzeugend einzustufen.

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de/ags -

Anhang 3: Messung von N-Nitrosaminen

Zur Messung von N-Nitrosaminen in der Luft in Arbeitsbereichen und in Materialproben stehen Messverfahren nach DGUV Information 213-500 und IFA Arbeitsmappe zur Verfügung²⁶.

Die Messverfahren erlauben Stichprobenmessungen mit ortsfesten und personengetragener Probenahmen. Die Analyse erfolgt bei allen Verfahren mittels Gaschromatographie und Chemilumineszenzdetektion.

Geeignete Messverfahren zur Überwachung der Akzeptanzkonzentration von 0,075 µg/m³ und der Toleranzkonzentration von 0,75 µg/m³:

Messverfahren Nr. 1:

Das Messverfahren nach IFA Arbeitsmappe Blatt Nr. 8172 eignet sich zur Bestimmung von N-Nitrosodibutylamin, N-Nitrosodiethylamin, N-Nitrosodimethylamin, N-Nitrosodipropylamin, N-Nitrosomethylamin, N-Nitrosomorpholin, N-Nitrosopiperidin und N-Nitrosopyrrolidin.

Die Bestimmungsgrenzen betragen für alle N-Nitrosamine 0,01 μg/m³.

Der obere Arbeitsbereich des Verfahrens ist bis zu einem Konzentrationsbereich von 0,75 µg/m³ für alle N-Nitrosamine abgesichert.

Geeignete Messverfahren zur Überwachung der Toleranzkonzentration von 0,75 µg/m³:

Messverfahren Nr. 2:

Das Messverfahren nach DGUV Information 213-523

(http://publikationen.dguv.de/dguv/pdf/10002/bgi505-23.pdf) bzw. DFG (The MAK Collection for Occupational Health and Safety, Air monitoring Methods:

http://onlinelibrary.wiley.com/doi/10.1002/3527600418.am5518e0004/pdf) eignet sich für die Bestimmung von Nitrosodibutylamin, N-Nitrosodiethylamin,

N-Nitrosodimethylamin, N-Nitrosodiisopropylamin, N-Nitrosodipropylamin,

N-Nitrosomethylethylamin, N-Nitrosomorpholin, N-Nitrosopiperidin und N-Nitrosopyrrolidin.

Die Bestimmungsgrenzen liegen im Bereich von 0.03 bis $0.08~\mu g/m^3$ je nach N-Nitrosamin.

Der obere Arbeitsbereich des Verfahrens ist bis zu einem Konzentrationsbereich von 2,5 µg/m³ für alle N-Nitrosamine abgesichert.

Messverfahren Nr. 3:

Die Messverfahren nach DGUV-Information 213-536

(http://onlinelibrary.wiley.com/doi/10.1002/3527600418.am111654e0004/pdf bzw. http://publikationen.dguv.de/dguv/pdf/10002/bgi505-36.pdf) und IFA Arbeitsmappe Blatt Nr. 8183 eignen sich zur Bestimmung von N-Nitrosodiethanolamin.

Falls Messungen weiterer N-Nitrosamine, die nicht in diesem Anhang aufgeführt sind, erforderlich sind, können sie ggf. durch die akkreditierten Messstellen und Prüflaboratorien für Arbeitsplatzmessungen durchgeführt werden (http://publikationen.dguv.de/dguv/pdf/10002/messstellen-gefahrstoffe.pdf).

TRGS 552 - Seite 25 von 36 (Fassung 31.10.2018)

Die Bestimmungsgrenze beträgt bei personengetragenen Messungen 0,08 μg/m³.

Der obere Arbeitsbereich des Verfahrens ist bis zu einem Konzentrationsbereich von 2,5 µg/m³ für alle N-Nitrosamine abgesichert.

Messverfahren Nr. 4 (derzeit eingeschränkt verfügbar):

Die Messverfahren nach DGUV-Information 213-562 http://publikationen.dguv.de/dguv/pdf/10002/bgi505-62.pdf bzw. http://onlinelibrary.wiley.com/doi/10.1002/3527600418.am61264e0005/pdf) und IFA Arbeitsmappe Blatt Nr. 8210 und 8226 eignen sich zur Bestimmung von N-Nitrosoethylphenylamin und N-Nitrosomethylphenylamin.

Die Bestimmungsgrenze beträgt für beide N-Nitrosamine 0,05 μg/m³.

Der obere Arbeitsbereich des Verfahrens ist bis zu einem Konzentrationsbereich von 4,0 µg/m³ für alle N-Nitrosamine abgesichert.

Analyse von N-Nitrosaminen in Materialproben:

Zur Analyse von N-Nitrosaminen in Materialproben stehen folgende Verfahren zur Verfügung:

N-Nitrosodiethanolamin in Kühlschmieremulsionen:

IFA Arbeitsmappe Blatt Nr. 7748/2

N-Nitrosomorpholin in Kühlschmieremulsionen:

IFA Arbeitsmappe Blatt Nr. 7748/3

N-Nitrosamine in Korrosionsschutzfolien oder Korrosionsschutzpapieren:

IFA Arbeitsmappe Blatt Nr. 8175

DIN EN 12868: Artikel für Säuglinge und Kleinkinder - Verfahren zur Bestimmung der Abgabe von N-Nitrosaminen und N-nitrosierbaren Stoffen aus Flaschen- und Beruhigungssaugern aus Elastomeren oder Gummi

DIN ISO 29941: Kondome - Bestimmung von aus Naturkautschuklatexkondomen migrierenden Nitrosaminen

DIN EN 71-12: Sicherheit von Spielzeug - Teil 12: N-Nitrosamine und N-nitrosierbare Stoffe

DIK-Arbeitsvorschrift nach R. Liekefeld, R. H. Schuster und G. Wünsch: Methoden zur Bestimmung von N-Nitrosaminen in der Luft, Vulkanisaten und Vulkanisationsdämpfen, Kautschuk Gummi Kunststoffe 44. Jahrgang, Nr. 6/1991, S. 514 ff

Anhang 4: Substitution und Schutzmaßnahmen bei der Herstellung von Gummi

1. Einleitung

Die hier vorliegenden Informationen zu Gefahrstoffen und Ersatzstoffen stellen den augenblicklichen Stand der Technik dar und erheben keinen Anspruch auf Vollständigkeit, da sie einem steten Wandel unterworfen sind. Es muss für jeden einzelnen Anwendungsfall die Eignung überprüft werden. Besonders erschwert ist eine Substitution bei der Herstellung von Erzeugnissen, die als zertifizierte Teile z.B. in sicherheitsrelevanten Baugruppen eingesetzt werden.

Es ist davon auszugehen, dass im Bereich der Grundstoffindustrie weiter neue chemische Stoffsysteme erarbeitet werden, die nicht mehr zur N-Nitrosaminbildung führen können, ausschließlich nicht krebserzeugende N-Nitrosamine bilden oder die N-Nitrosamin-Bildung verringern. Ebenso wird in der Gummiindustrie stark daran gearbeitet, durch alle verfügbaren Maßnahmen die N-Nitrosaminkonzentration laufend weiter zu senken.

2. Substitution und Anforderungen an den Werkstoff Gummi

Der Werkstoff Gummi wird nach DIN 7724 als elastomerer Werkstoff eingestuft. Wesentliche Merkmale sind eine sehr hohe Dehnfähigkeit, verbunden mit sehr geringer bleibender Dehnung (Entropieelastizität), sowie die Lage des Versprödungsbereiches in der Kälte (Kälterichtwertes) unter 0°C. Dieses Verhalten beruht auf den relativ geringen Kräftewechselwirkungen zwischen den Makromolekülen (daher die Beweglichkeit der Moleküle) und dem Vorliegen eines hauptvalenzmäßig aufgebauten weitmaschigen Netzwerks (dadurch die Stabilität des Werkstoffs).

Die Netzstellen entstehen durch eine chemische Reaktion während des Herstellungsprozesses unter Anwendung von Temperatur und Druck (Vulkanisation).

Im Gesamtsystem der Werkstoffe kommt dem elastomeren Werkstoff eine besondere Stellung zu insofern, als die harten Werkstoffe mit hohem Elastizitätsmodul wie z. B. Metalle oder verstärkte Thermoplaste als stabile Gerüstwerkstoffe eingesetzt werden. Dem Gummi als elastischem, weichem Werkstoff kommt ergänzend die Rolle zu, in Form von Dichtungen, Schläuchen, Keilriemen, Reifen usw. als flexibler Werkstoff eine Ausgleichsfunktion zu erfüllen. Aufgrund dieser besonderen Eigenschaften ist Gummi ein Werkstoff, der sich als unersetzlich im Gesamtkonzept verschiedener Konstruktionen erweist. Der in der Praxis eingesetzte Werkstoff baut sich aus einer Reihe von Bestandteilen auf: neben dem Polymer (das die Grundlage darstellt), den aktiven Füllstoffen, Weichmachern, Alterungsschutzmitteln und Pigmenten spielt das Vernetzungssystem die entscheidende Rolle, eine Kombination von Stoffen, die oben genannte Vernetzungsreaktion bewirken.

Nach der bisherigen Verfahrensweise sind in diesem System s.g. "Beschleuniger" als Stoffe enthalten, die in vielen Fällen in ihrer Struktur sekundäre Amine vorgebildet enthalten. Diese werden dann im Laufe der Reaktion freigesetzt und können in weiteren Reaktionsschritten mit nitrosierenden Agenzien N-Nitrosamine bilden. Über den Bildungsmechanismus von N-Nitrosaminen im Werkstoff und in der Luft liegen bisher trotz zahlreicher Untersuchungen nur begrenzte Erkenntnisse vor, so dass eine Vorhersage für das Auftreten von N-Nitrosaminen nur bedingt möglich ist.

Eine einfache Substitution, bei dem einzelne nitrosaminbildende Stoffe einfach

ersetzt werden, ist oft nicht erfolgreich, da dann die einsatzspezifischen Zieleigenschaften oder die geforderte Alterungsbeständigkeit nicht erreicht werden. In der Regel muss daher das bestehende Stoffsystem mehr oder weniger umgestaltet werden, wobei mehrere Stoffe ausgetauscht werden. Ziel dieser Entwicklung ist es, Komponenten ohne sekundäre Amine oder mit sekundären Aminen, deren N-Nitrosamine nicht krebserzeugend sind, einzusetzen.

Prinzipiell sind hier vier verschiedene Situationen denkbar:

- 1. Ersatz einer Substanz in einer Rezeptur durch eine andere im Verhältnis 1:1 unter Beibehaltung der Produkteigenschaften
- 2. Ersatz von Substanzen unter Veränderung der Rezeptur unter Beibehaltung der Produkteigenschaften
- 3. Ersatz von Substanzen unter Veränderung der Rezeptur, ohne dass die ursprünglichen Produkteigenschaften erreicht, aber die Mindestanforderungen erfüllt werden
- 4. Nach dem Stand der Technik können weder durch Ersatzstoffe noch durch Rezepturänderungen die Mindestanforderungen an die Produkteigenschaften erreicht werden.

3. Ersatzstoffe und Inhibitoren

Die unter dem Gesichtspunkt der möglichen Bildung von nitrosierbaren Stoffen relevanten Stoffgruppen und Einzelstoffe sind in Tabelle 1 zusammengestellt, Ersatzstoffe in Tabelle 2. Je nach den jeweils notwendigen Produkteigenschaften kann ein Ersatz mehr oder weniger erfolgreich sein. Deshalb ist in einigen Fällen eine Mehrfachklassifizierung notwendig.

3.1 Ersatzstoffe

Sulfenamide (Gruppe 1)

Hier sollten in erster Linie 2-Morpholin-benzothiazol-sulfenamid (MBS) und N,N-Diisopropyl-2-benzothiazol-sulfenamid (DIBS) durch andere Sulfenamide (vgl. Tabelle 2, Gruppe E1) in Kombination mit Verzögerern oder sonstigen Zweitbeschleunigern ersetzt werden.

Allerdings hat sich MBS noch nicht in allen Fällen austauschen lassen, insbesondere bei Anwendungen, die Hitzefestigkeit und dynamische Beständigkeit erfordern (z. B. bestimmte Motorlagerungselemente). Bei einzelnen Anwendungen lassen sich jedoch diese Anforderungen durch die Verwendung einer Kombination von N-Cyclohexyl-2-benzothiazol-sulfenamid (CBS) bzw. N-t-Butyl-2-benzothiazol-sulfenamid (TBBS) mit 1,6-Bis(N,N-dibenzyl-thiocarbamoyl-dithio)hexan (BDBzTH) erreichen.

Im Falle von 2-Morpholin-dithiobenzothiazol (MBSS) liegen aufgrund spezialisierter Verwendung zu wenige Kenntnisse vor, um eine Einstufung vorzunehmen.

Die Stoffe N-Oxydiethylen-thiocarbamoyl-N-oxydiethylen-sulfenamid (OTOS) und N-Oxydiethylen-thiocarbamoyl-N-t-butyl-sulfenamid (OTTBS) sind vergleichbar mit den Sulfenamiden, was die Beanspruchung und die Einsatzfälle anbetrifft. In Spezialfällen (Hitzeeinwirkung, dynamische Beanspruchung) ist hier ein Ersatz noch

nicht möglich. Hier ist anzumerken, dass inzwischen OTOS selbst vom Hersteller als krebserzeugend eingestuft wurde.

Dithiocarbamate (Gruppe 2) / Thiurame (Gruppe 3)

Die Vertreter dieser umfangreichen Stoffgruppe enthalten vorgebildete sekundäre Amine in ihrer Struktur. Für normale Beanspruchungen bieten sich hier eine Reihe von Ersatzstoffen an, wie z.B. Zink-dibenzyl-dithiocarbamat (ZBEC), Zink-(4-methylpiperazino)-dithiocarbamat (ZMP), Diisononyl-dithiocarbamate (alle Gruppe E2), Dithiophosphate (E8), Guanidine (E6), Xanthogenate, Polyxanthogenat (beide E9) und Diamindiisocyanato-Zink (E10).

Hier ist speziell darauf hinzuweisen, dass die Dithiocarbamate immer nur als Bestandteile eines Vernetzungssystems auftreten, so dass deshalb eine Einzelbewertung nur eingeschränkt in Frage kommt.

Nickeldithiocarbamate werden noch als Ozonschutzmittel in dynamisch beanspruchten Spezialkautschuken eingesetzt. Ein Ersatz dieser krebserzeugenden Verbindungen durch andere, allgemein anwendbare Ozonschutzmittel ist nur begrenzt möglich. Als Ozonschutzmittel können oktyliertes Diphenylamin (ODPA), N-Phenyl-N'-(1,3-dimethyl-butyl)-p-phenylendiamin (6PPD) oder auch chlorsulfoniertes Polyethylen (CSM) eingesetzt werden.

Als Ersatz für gängige Thiurame wie Tetramethyl-thiuram-disulfid (TMTD) kommen das Tetrabenzyl-thiuram-disulfid (TBzTD), das Tetraisobutyl-thiuram-disulfid (TiBTD) oder das Bis(4-methyl-piperazino)-thiuram-disulfid (MPT) in Frage (E3). Sie können aber wegen ihrer besonderen Molekülgröße nicht als einfacher Ersatz angesehen werden. Entscheidende Gesichtspunkte sind hier die Hitzebeständigkeit und der niedrige Druckverformungsrest des Werkstoffes, immer in Verbindung mit einer günstigen technologischen Verarbeitbarkeit der Rohmischung.

Schwefeldonor (Gruppe 4)

Als Ersatz für das N,N'-Dithiodimorpholin (DTDM) kommt z. B. Caprolactam-disulfid (CDS) in Frage (E4), (Hinweis: erzeugt Caprolactam in der Vulkanisation).

Dithiocarbamate (Gruppe E2) / Thiurame (Gruppe E3)

Fragen zur Kanzerogenität des N-Nitroso-4-methylpiperazins (NMPz) und des N-Nitroso-diisobutylamins (NDiBA) sind noch nicht abschließend geklärt. Arbeiten zur Kanzerogenität des N-Nitrosodiisononylamins (NDiNA) liegen noch nicht vor. Bei Verwendung dieser Produkte ist nach heutigem Wissensstand zu erwarten, dass für die Beschäftigten ein geringeres gesundheitliches Risiko besteht.

Thiazole (Gruppe E5)

Thiazole als eine der wichtigsten Beschleunigergruppen und die genannten Verbindungen können als Grundlage für Ersatzsysteme gelten.

Guanidine (Gruppe E6)

Diese Stoffklasse ist als Zweitbeschleunigerklasse sehr wichtig. Problematisch ist die mögliche Freisetzung von primären aromatischen Aminen.

Thioharnstoffe (Gruppe E7)

Prinzipiell sind die Thioharnstoffe kein Ersatz für die Gefahrstoffe der Tabelle 1. Sie können jedoch als Zusätze in Ersatzsystemen eine Wirkung haben. Das toxikologische Profil der Thioharnstoffe ist nicht ausreichend abgesichert.

2-Mercapto-imidazolin (ETU) selbst gilt als fruchtschädigende Substanz. Bei den übrigen ist Senfölbildung (d.h. Bildung von organischen Isothiocyanaten) möglich.

Thiophosphate (Gruppe E8)

Vertreter dieser Stoffklasse können einzelne Dithiocarbamate ersetzen. Mehrere Dithiocarbamate können nicht allein durch Thiophosphate ersetzt werden. Als Sekundärbeschleuniger in Verbindung mit Thiazolen oder Sulfenamiden können jedoch Thiophosphate manche Dithiocarbamate oder Thiurame ersetzen. Langkettige Dithiophosphate sollten bevorzugt werden, weil damit mögliche flüchtige Zersetzungsprodukte vermieden werden können.

Xanthogenate (Gruppe E9)

Beim Aufbau von Ersatzsystemen spielt das Polyxanthogenat (AS 100) eine Rolle, bedarf aber der Zusatz-Aktivierung.

Weitere Produkte (Gruppe E10)

Wie die Thiophosphate kann auch Diamindiisocyanato-zink als Ersatz für individuelle Dithiocarbamate benutzt werden.

- 3-Methyl-thiazolidin-2-thion ist ein spezieller Ersatz für Ethylenthioharnstoff (ETU) in Polychloropren.
- 1,6-Bis(N,N-dibenzyl-thiocarbamoyl-dithio)hexan (BDBzTH) ist ein bifunktioneller Vernetzer zur Vermeidung der Reversion. Seine Wirkung beruht auf dem Einbau thermodynamisch stabiler, flexibler Hybridnetzstellen. Zusätzlich kann BDBzTH auch als scorchsicherer Zweitbeschleuniger eingesetzt werden.

Hexamethylentetramin (HMT) wird üblicherweise als Formaldehyd-Spender für Haftsysteme eingesetzt, hat aber auch Wirkung als Zweitbeschleuniger. Die Vernetzung mit Phenolharzen erfolgt nach einem anderen Mechanismus. Der Mischungsaufbau ist diesem System anzupassen. Die Vulkanisation erfolgt üblicherweise bei höheren Temperaturen als die Schwefelvernetzung und führt zu Produkten mit guten thermischen, aber begrenzten dynamischen Eigenschaften.

Peroxide (Gruppe E11)

Da Peroxide einem völlig anderen Vernetzungsmechanismus haben, ist auch der Mischungsaufbau mit dem der Schwefelvernetzung nur bedingt vergleichbar. Deshalb ist bei ihrem Einsatz immer eine Neuentwicklung notwendig. Die Vulkanisation sollte unter Sauerstoffausschluss erfolgen. Die erreichbaren Vulkanisationseigenschaften sind in Bezug auf Festigkeit. Bruchdehnung, Einreißfestigkeit und dynamischen Eigenschaften denen der Schwefelvernetzung unterlegen, in Bezug auf thermische Beständigkeit jedoch überlegen.

3.2 Inhibitoren

3.2.1 NOx-Fänger

Die hauptsächlich bekannt gewordenen Verbindungen der sog. "NOx-Inhibitoren" sind Ascorbinsäure (Vitamin C), α-Tocopherol (Vitamin E), Harnstoff und Chromanole.

Versuche mit Ascorbinsäure sind wegen der Temperatur- und Oxidationsempfindlichkeit des Stoffes frühzeitig eingestellt worden. Stabilisierte Derivate der Ascorbinsäure, z. B. Ascorbylpalmitat, erweisen sich als wenig wirkungsvoll.

Die Wirkung von α -Tocopherol ist nach bisheriger Kenntnis auf Mischungen, die Ruß enthalten, begrenzt. Allerdings müssen mischungstechnisch aufwändigere Maßnahmen beachtet werden. Oxidationsmittel oder z. B. größere Anteile ZnO in der Mischung behindern die Wirkung von α -Tocopherol.

Harnstoff könnte wie primäre Amine in Konkurrenz zu den sekundären Aminen bei der Nitrosierung treten. Es liegen noch nicht genügend Erfahrungen für eine Beurteilung vor. NOx-Fänger wirken nur im Gummi selbst; austretende sekundäre Amine können in der Gasphase mit nitrosierenden Agenzien schnell zu N-Nitrosaminen reagieren.

3.2.2 Amin-Fänger

Amin-Fänger ("Amin-Inhibitoren") haben den Vorteil, die bei der Vulkanisation freigesetzten Amine zu binden, damit die Bildung der entsprechenden N-Nitrosamine zu verhindern bzw. zu reduzieren und somit auch N-Nitrosamin-Emissionen aus dem Vulkanisat in starkem Maße zu vermindern. Ihr Einsatz hat sich im Bereich der Vulkanisationspressen in vielen Fällen als wirksam erwiesen und darüber hinaus, im Gegensatz zu den NOx-Fängern, auch in nachgeschalteten Produktions- und Lagerbereichen sowie beim Kunden.

Die Bindung der freigesetzten Amine wird durch den Einsatz blockierter Isocyanate unter Bildung der entsprechenden Harnstoffderivate erreicht. Eine Reihe kommerzieller Produkte steht hierfür zur Verfügung. Diese nicht toxischen Verbindungen sind beim Mischprozess weitestgehend stabil und spalten bei der Vulkanisation die für die Aminbindung notwendigen, sehr reaktiven Isocyanate ab. Nicht umgesetzte (toxische) Isocyanate werden beim Abkühlen der Vulkanisate wieder in die blockierte Form überführt, so dass keine Gefährdung der Beschäftigten besteht.

Insbesondere bei ruß gefüllten Mischungen kann mit dieser Vorgehensweise eine fast vollständige Reduzierung der Amin- bzw. N-Nitrosamin-Emissionen erreicht werden. Langjährig bewährte Vulkanisationssysteme können auch weiterhin beibehalten werden. Der Einsatz blockierter Isocyanate ist immer dann sinnvoll, wenn noch keine vom Kunden akzeptierte technische Lösung auf Basis nitrosaminfreier Vernetzersysteme existiert.

4. Mögliche Grenzen des Ersatzstoff-Einsatzes

Mit den beschriebenen und weiteren Ersatzstoffen und Ersatzverfahren zur Reduzierung der Bildung von krebserzeugenden N-Nitrosaminen ist eine für den Arbeitsschutz positive Entwicklung in Gang gekommen, die aber gleichzeitig auch mit bestimmten Problemen behaftet ist.

Es erweist sich als besonders schwierig, die Fälle zu charakterisieren, bei denen zurzeit ein vollständiger Ersatz noch nicht möglich ist. Es sind an charakteristischen Mischungen Gegenüberstellungen vorgenommen worden, die anhand des physikalischen Niveaus zeigen, dass durch Umstellung das gewünschte Niveau noch nicht erreicht werden konnte. Physikalische Daten geben das Verhalten nicht ausreichend wieder. Entscheidend sind die Ergebnisse auf dem Prüfstand und das

TRGS 552 - Seite 31 von 36 (Fassung 31.10.2018)

Praxisverhalten.

Kundenanforderungen an den Artikel können oft nicht vollständig erfüllt werden oder die Funktion des Artikels ist beeinträchtigt. Dies betrifft im Wesentlichen Alterungsbeständigkeit, Druckverformungsrest und dynamische Tüchtigkeit sowie weitere Spezialanforderungen.

Weitere Hinderungsgründe für Rezepturumstellungen können Anforderungen bezüglich Lebensmittel- und Trinkwasseranwendungen sein. Mischungen sind hier bisher nur für sehr spezifische Fälle optimiert. Ersatzstoffe sind häufig noch gar nicht für Lebensmittelbedarfsgegenstände zugelassen.

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de/ags -

Tabelle 1: Gefahrstoffe mit technischer Bedeutung, die krebserzeugende N-Nitrosamine der Kat. 1 und 2 bilden können

						Ersatz-Empfehlungen			lungen
						ı	II	III	IV
	Stoffname				gebildete	1:1	neue Syst.	neue Syst.	
		Internat.	CAS	EINECS	N-Nitros-	ohne	ohne	mit	Kein
		Abkürzung	Nr.	Nr.	amine	Einbußen	Einbußen	Einbußen	Ersatz
	- Sulfenamide -								
.1	N,N-Diisopropyl-2-benzothiazol-sulfenamid	DIBS	95-29-4	202-407-0	NDiPA		х		
.2	2-Morpholin-benzothiazol-sulfenamid	MBS	102-77-2	203-052-4	NMOR		х		X
.3	2-Morpholin-dithiobenzothiazol	MBSS	95-32-9	202-410-7	NMOR				*)
.4	N-Oxydiethylen-thiocarbamoyl-N-oxydiethylen- sulfenamid	OTOS	13752-51-7	237-335-9	NMOR				Х
5	N-Oxydiethylen-thiocarbamoyl-N-t-butyl- sulfenamid	OTTBS	68310-86-1	269-740-1	NMOR				Х
	- Dithiocarbamate -								
1	Kupfer-dimethyl-dithiocarbamat	CDMC	137-29-1	205-287-8	NDMA		х		
2	Nickel-dimethyl-dithiocarbamat	NDMC	15521-65-0	239-560-8	NDMA			х	
3	Nickel-di-n-butyl-dithiocarbamat	NDBC	13927-77-0	237-696-2	NDBA			х	
4	Tellur-diethyl-dithiocarbamat	TDEC	20941-65-5	244-121-9	NDEA			х	
5	Zink-pentamethylen-dithiocarbamat	Z5MC	13878-54-1	237-643-3	NPIP		х		
6	Zink-dibutyl-dithiocarbamat	ZDBC	136-23-2	205-232-8	NDBA	х	x		ZBEC
7	Zink-diethyl-dithiocarbamat	ZDEC	14324-55-1	238-270-9	NDEA	х	х		ZBEC
8	Zink-ethylphenyl-dithiocarbamat	ZEPC	14634-93-6	237-677-1	NEPhA		х		ZBEC
9	Zink-dimethyl-dithiocarbamat	ZDMC	137-30-4	205-288-3	NDMA	х	х		ZBEC

x = Mehrfachnennungen erfolgen, wenn Anforderungen verschiedener Anwendungsgebiete unterschiedlich beurteilt werden. *) = kein NDBA = N-Nitrosodibutylamin NDEA = N-Nitrosodiethylamin NDMA = N-Nitrosodimethylamin NEPhA = N-Nitrosoethylphenylamin *) = keine Kenntnisse vorhanden

NDiPA = N-Nitrosodiisopropylamin NMOR = N-Nitrosomorpholin NPIP = N-Nitrosopiperidin

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de -

TRGS 552 - Seite 33 von 36 (Fassung 31.10.2018)

Tabelle 1: Gefahrstoffe mit technischer Bedeutung, die krebserzeugende N-Nitrosamine der Kat. 1 und 2 bilden können (Fortsetzung)

					Ersatz-Empfehlungen				
						1	II	III	IV
	Stoffname				gebildete	1:1	neue Syst.	neue Syst.	
		Internat.	CAS	EINECS	N-Nitros-	ohne	ohne	mit	Kein
		Abkürzung	Nr.	Nr.	amine	Einbußen	Einbußen	Einbußen	Ersatz
3.	- Thiurame -								
3.1	Dipentamethylenthiuram-hexasulfid	DPTT (DPTH)	120-54-7	204-406-0	NPIP			х	
3.2	Dimethyldiphenyl-thiuram-disulfid	MPhTD	53880-86-7	258-835-3	NMPhA		TBzTD x		
3.3	Tetraethyl-thiuram-disulfid	TETD	97-77-8	202-607-8	NDEA	х	TBzTD		
3.4	Tetramethyl-thiuram-disulfid	TMTD	137-26-8	205-286-2	NDMA		TBzTD x		х
3.5	Tetramethyl-thiuram-monosulfid	TMTM	97-74-5	202-605-7	NDMA		TBzTD		x
4.	- Schwefeldonor -								
4.1	N,N'-Dithiodimorpholin	DTDM	103-34-4	203-103-0	NMOR			х	

x = Mehrfachnennungen erfolgen, wenn Anforderungen verschiedener Anwendungsgebiete unterschiedlich beurteilt werden.

NDEA = N-Nitrosodiethylamin NDMA = N-Nitrosodimethylamin NMOR = N-Nitrosomorpholin

NMPhA = N-Nitrosomethylphenylamin

NPIP = N-Nitrosopiperidin

TRGS 552 - Seite 34 von 36 (Fassung 31.10.2018)

Tabelle 2: Ersatzstoffe für die in Tabelle 1 genannten Gefahrstoffe

		Internat.	CAS	EINECS	mögliche	
	Stoffname	Abkürzung	Nr.	Nr.	N-Nitrosamine	Bemerkungen zum Produkt
E1.	- Sulfenamide -					
E1.1	N-Cyclohexyl-2-benzothiazol-sulfenamid	CBS	95-33-0	202-411-2	-	-
E1.2	N,N-Dicyclohexyl-2-benzothiazol-sulfenamid	DCBS	4979-32-2	225-625-8	NDCHA	N-Nitrosamin nicht krebserzeugend*
E1.3	N-t-Butyl-2-benzothiazol-sulfenamid	TBBS	95-31-8	202-409-2	-	
E1.4	N-t-Butyl-bis(2-benzothiazol-sulfenamid)	TBSI	3741-80-8		-	
E2.	- Dithiocarbamate -					
E2.1	Zink-dibenzyl-dithiocarbamat	ZBEC	14726-36-4	238-778-0	NDBzA	N-Nitrosamin nicht krebserzeugend*
E2.2	Zink-(4-methylpiperazino)-dithiocarbamat	ZMP	55518-81-5		NMPz	Kanzerogenitätsbewertung steht aus
E2.3	Zink-diisononyl-dithiocarbamat		84604-96-6	283-381-8	NDiNA	Arbestab Z; Kanzerogenitätsbewertung steht aus
E3.	- Thiurame -					
E3.1	Bis(4-methylpiperazino)-thiuram-disulfid	MPT	20231-01-0		NMPz	Kanzerogenitätsbewertung steht aus
E3.2	Tetrabenzyl-thiuram-disulfid	TBzTD	10591-85-2	404-310-0	NDBzA	N-Nitrosamin nicht krebserzeugend*
E3.3	Tetraisobutyl-thiuram-disulfid	TiBTD	3064-73-1	221-312-5	NDiBA	Kanzerogenitätsbewertung steht aus
E4.	- Schwefeldonor -					
E4.1	Caprolactam-disulfid	CDS	23847-08-7	245-910-0	-	

^{*} siehe TRGS 552 Nummer 1 Abs. 2

NDBzA = N-Nitrosodibenzylamin

NMPz = N-Nitroso-4-methylpiperazin

NDCHA = N-Nitrosodicyclohexylamin NDiNA = N-Nitrosodiisononylamin

NDiBA = N-Nitrosodiisobutylamin

Die in der Spalte "Bemerkungen zum Produkt" erwähnten Kanzerogenitätsbewertungen beziehen sich auf das jeweils gebildete N-Nitrosamin

 Tabelle 2: Ersatzstoffe für die in Tabelle 1 genannten Gefahrstoffe (Fortsetzung)

	E 2. El satzstone fui die in Tabelle i genannen Gelanie	Internat.	CAS	EINECS	mögliche	
	Stoffname	Abkürzung	Nr.	Nr.	N-Nitrosamine	Bemerkungen zum Produkt
E5.	- Thiazole -	· ·				Č
E5.1	2-Mercapto-benzothiazol	MBT	149-30-4	205-736-8	-	
E5.2	Dibenzothiazol-disulfid	MBTS	120-78-5	204-424-9	-	
E5.3	Zink-2-mercapto-benzothiazol	ZMBT	155-04-4	205-840-3	-	
E5.4	2(2',4'-Dinitrophenylthio)benzothiazol		4230-91-5	224-183-3	-	setzt NOx-Verbindungen frei, die Amine nitro-sieren können
E6.	- Guanidine -					
E6.1	N,N'-Diphenylguanidin	DPG	102-06-7	203-002-1	-	kann Anilin freisetzen
E7.	- Thioharnstoffe -					
E7.1	Di-n-butyl-thioharnstoff	DBTU	109-46-6	203-674-6	-	evtl. Senfölbildung bei der Vulkanisation möglich
E7.2	Diethyl-thioharnstoff	DETU	105-55-5	203-307-5	-	evtl. Senfölbildung bei der Vulkanisation möglich
E7.3	Diphenyl-thioharnstoff	DPTU	102-08-09	203-004-2	-	evtl. Senfölbildung bei der Vulkanisation möglich
E8.	- Thiophosphate -					
E8.1	Zink-O,O-di-n-butyl-dithiophosphat	ZBPD	6990-43-8	230-257-6	-	kurzkettiges Dithiophosphat
E8.2	Zink-O-butyl-O-hexyl-dithiophosphat		68413-49-0	270-221-7	-	langkettiges Dithiophosphat, bevorzugt
E8.3	Zink-O,O-diisooctyl-dithiophosphat	ZOPD				langkettiges Dithiophosphat, bevorzugt
E8.4	Dodecylammonium-diisooctyl-dithiophosphat	AOPD				langkettiges Dithiophosphat, bevorzugt
E9.	- Xanthogenate -					
E9.1	Zink-O,O'-diisopropyl-bisxanthogenat		1000-90-4	213-680-0	-	Robac ZIX
E9.2	Polyxanthogenat		69303-50-0		-	Robac AS 100

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de -

TRGS 552 - Seite 36 von 36 (Fassung 31.10.2018)

Tabelle 2: Ersatzstoffe für die in Tabelle 1 genannten Gefahrstoffe (Fortsetzung)

	e 2. Ersatzstone für die in Fabelle T genannten Gefanst	Internat.	CAS	EINECS	mögliche	
	Stoffname	Abkürzung	Nr.	Nr.	N-Nitrosamine	Bemerkungen zum Produkt
E10.	- Weitere Produkte -					
E10.1	Diammindiisocyanato-zink		122012-52-6	401-610-3	-	Geniplex A; kann einzelne Dithiocarbamate ersetzen
E10.2	3-Methyl-thiazolidin-thion-2		1908-87-8	217-614-1	-	Vulkacit CRV; spezieller Ersatz für ETU in CR
E10.3	Hexamethylentetramin	HMT	100-97-0	202-905-8	-	bildet Formaldehyd
E10.4	Octylphenolresol		26678-93-3		-	angepasster Mischungsaufbau erforderlich
E10.5	Hexamethylen-1,6-bis(thiosulfat)-dinatrium, Dihydrat	HTS	5719-73-3	401-320-7	-	Hybrid-Vernetzer neben Schwefelvernetzungen
E10.6	1,3-Bis(citraconimidomethyl)-benzol	BCI-MX	11946-56-5		-	Reversions-Stabilisator, der kompensatorisch vernetzt, für die Gesamtvernetzung eingeplant werden kann
E10.7	1,6-Bis(N,N-dibenzyl-thiocarbamoyl-dithio)-hexan	BDBzTH	151900-44-6			reversionsstabiler Vernetzer, Wirkung durch die Bildung thermostabiler, flexibler Carbasulfannetzstellen
E11.	- Peroxide -					
E11.1	Dicumylperoxid	DCP	80-43-3	201-279-3		Anwendung begrenzt durch spezifisch andere
E11.2	t-Butylcumylperoxid	TBCP	3457-61-2	222-389-8	-	erreichbare Gummi-Eigenschaften sowie durch
E11.3	Di-t-butylperoxid	DTBP	110-05-4	203-733-6	-	spezielle Verarbeitungsbedingungen
E11.4	Bis(t-butylperoxyisopropyl)-benzol		25155-25-3	246-678-3	-	
E11.5	2,5-(t-Butylperoxy)-2,5-dimethylhexan		78-63-7	201-128-1	-	
E11.6	1,1-Di(t-butylperoxy)-3,3,5-trimethyl-cyclohexan		6731-36-8	229-782-3	-	
E11.7	Dibenzoylperoxid	DBP	94-36-0	202-327-6	-	
E11.8	Bis(2,4-dichlorobenzoyl)peroxid		133-14-2	205-094-9	-	
E11.9	4,4-Bis-(t-butylperoxy)-butylvalerat		995-33-5	213-626-6	-	
E11.10	2,5-(t-Butylperoxy)-2,5-dimethylhexin-3		1068-27-5	213-944-5		
E11.11	t-Butylperoxybenzoat	TBPB	614-45-9		-	

⁻ Ausschuss für Gefahrstoffe - AGS-Geschäftsführung - BAuA - www.baua.de -